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SUMMARY 

As the complexity of micro-electronic systems continuously increases, it becomes 

critical to develop effective tools that can cut the design time and improve the quality of 

design. DoD needs to develop new tools to be able to simulate large complex systems, 

and to fully maximize the rapid progress in high performance computing technology 

occurring today. 

The goal of this project was to develop and implement efficient paradigms for VHDL 

simulation on massively parallel processor machines so that we can achieve speed-up of up 

to a hundred times compared to sequential simulation. Our research focus was on 

performance and behavioral level simulation. The performance model allows us to find the 

trade off between various hardware components and architectures. Behavioral simulations 

are used to prove the functional correctness of the system. 

The research issues involved in the project were: processor communication, 

synchronization, and event queue manipulation, deadlock handling, communication latency 

hiding, and granularity of computation. We have measured the performance of the 

proposed techniques on various platforms such as the IBM SP2 and SGI Origin 2000, and 

achieved speed-ups of 31 times. 



BACKGROUND 

With the increasing complexity of micro-electronics systems, validating various models 

(or virtual prototypes) becomes critically important. There are two approaches to validating 

the correctness of VLSI design: verification techniques and simulation. Of these two 

approaches, simulation is still the primary tool. Simulation can be used in a hierarchical 

fashion. At the top level, performance models are used to explore the trade off between 

various hardware components and architectures. Behavioral simulations are used to prove 

the correctness of the system specification. At a lower level, timing simulation is used to 

validate the correct timing information such as set-up hold times, and is the only practical 

tool available at this level. For large micro-electronics systems, simulation has become a 

very time-consuming and critical part of VLSI design. Typically, simulation constitutes 

about 80% of the design cycle. 

VHDL is an IEEE standard hardware description language developed by the DoD. It 

can be used to describe systems at both behavioral and structural levels. It can also be used 

to describe a performance model. It is expected that we need to simulate a system up to 

100,000 VHDL processes to accurately model a start-of-the-art system. Simulating such a 

large system can be extremely slow in a sequential machine. 

Parallel logic simulation has recendy attracted a considerable amount of interest. 

However, most research is restricted to symmetric multi-processor machines or a MIMD 

machine with a small number of processors. Moreover, there are only a few benchmark 

results available based on actual simulation of large circuits. The few existing empirical 

results are based on MIMD machines with only a small number of processors, typically 

tens of processors. Thus, the speed-ups attained compared to sequential simulation are 

severely limited. With the hardware resources available for High Performance Computing, 

such as the 336 node Intel Paragon, and the 400 node IBM SP2, parallel simulation on 

Massively Parallel Processors (MPP) is now feasible which can achieve a speed-up of up to 



several hundred times compared to sequential simulation. 

NECESSITY 

The research will result in fast parallel simulation techniques which can achieve speed- 

up of up to hundreds of times compared to sequential simulation. The proposed parallel 

simulation techniques will provide an attractive solution to better throughput of the overall 

design environment. Fast parallel simulation of large VLSI systems enables the designer to 

validate the correctness of the design. The usage of behavioral simulation in an earlier stage 

of the VLSI system design can prove the functional correctness. By speeding up the 

performance model simulation, designer can carry out extensive HW/SW trade-off 

analysis, and allow designers to select the best hardware architecture. The structural level 

simulation can be used to validate the correctness in logic level and timing. The fast 

simulator developed in this research will allow designers to validate various virtual 

prototypes and to test complete fault coverage analysis. Thus, the design cycle can be 

shortened, and the number of real prototypes to be constructed can be reduced. Parallel 

simulation tools will allow 4X productivity improvement of RASSP goal. 

PROGRAM 

This program was funded by the DoD High Performance Computing Modernization 

Office (HPCMO) under the Common High Performance Computing Software Support 

Initiative (CHSSI), Computational Electronics and Nanoelectronics area. This area was led 

by Dr. Barry S Perlman, U.S. Army CECOM, Fort Monmouth NJ. Preliminary research 

was performed by the Army Research Laboratory (ARL) at Fort Monmouth as a joint 

research effort. Several team members at ARL were involved in parallel simulation, 

VHDL, and testing. 



1. INTRODUCTION 

1.1VHDL 

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description 

Language. It is an IEEE standard language used to describe the structure and behavior of 

digital electronic systems. It allows the designer to describe how the electronic system is 

decomposed into subsystems and how the subsystems are interconnected. It uses 

programming language forms to specify the functions of a system. VHDL makes it much 

easier to describe very large circuits and systems. 

A big advantage of VHDL is that it allows testing and verification of designs using 

simulations. The designer can simulate the behavior of a system using test inputs then 

compare the resulting outputs to the requirement model of the system. The mismatch in 

the comparison usually indicates design problems, thus enabling the designer to reexamine 

the design and correct the errors. 

1.2 PARALLEL VHDL 

Many digital electronic systems used in current and future industrial and military 

systems are too large to be effectively simulated on even state-of-the-art workstations. 

Currently, performance simulation is extremely slow and is a major bottleneck for the 

development of micro-electronic systems. Research conducted at Lockheed Martin under 

DoD sponsorship has shown that simulation of only a portion of a digital signal processing 

system can take over 20 hours. As should be expected, actually building systems or 

prototypes is prohibitively expensive. The power of parallel machines, along with 

appropriate software development, is therefore essential to the maintenance and upgrade 

of existing systems and the development of future systems. 



As a result, parallel simulation has attracted a considerable amount of interest. 

However, most research on parallel simulation is restricted to symmetric multi-processor 

machines or MIMD machines with a small number of processors. There are few 

benchmark results available based on actual simulations of large circuits. The few existing 

empirical results are based on MIMD machines with only a small number of processors, 

typically tens of processors. Thus, the speed-ups attained compared to sequential 

simulation are severely limited. To simulate a system with up to millions of processes, the 

computational power of massively parallel processors (MPP) with several hundred 

processors is necessary. 

1.3 GOAL 

The goal of the Parallel VHDL Simulation Project at Michigan State University was to 

develop and implement a new and efficient paradigm for VHDL simulations on massively 

parallel machines (MPP) and enable simulation speed-ups of up to two orders of 

magnitude. The simulator uses MPI, a standard parallel communication protocol. The 

developed parallel program is scalable and portable. From a user's point of view, the 

output of this development effort is a fast parallel program that is able to simulate a large 

digital system with up-to 100,000 VHDL processes at the performance level. By using this 

simulator, designers may be able to prove the functional correctness of digital system, 

assess the performance of candidate architectures of a digital system, and select the best 

architecture that meets requirements. The design cycle thus can be shortened, and the 

number of real prototypes to be constructed can be reduced. 

In this project, a subset of VHDL constructs is selected to describe the performance 

and behavioral models. These selected VHDL constructs are powerful enough to describe 

the behavior and function of any hardware systems, yet simple enough so that models 

written using these constructs can be efficiently simulated in parallel. 



1.4 OBJECTIVE 

The required software system is a behavioral simulator for digital micro-electronic 

systems. The simulator accepts a VHDL description of a digital system to be simulated 

and the test vectors. The output of the software is the values of signals and the event times 

when such changes occur. VHDL is used widely to describe models of digital electronic 

systems. The designer can simulate and validate the various levels of VHDL models from 

the system level architecture to detailed design. Performance model is a term used to 

denote the modeling in which the focus is on the behavior of the system in terms of 

available resources and computational requirements (such as input rate, network queues, 

and computational resources). 

From a user point of view, the output of this development effort will be a fast parallel 

program that will be able to simulate a large digital system with up-to 100,000 VHDL 

processes at the performance level. Using the simulator designers may be able to prove the 

functional correctness of digital system, assess the performance of candidate architectures 

of a digital system, and select the best architecture that meets requirements. Thus, the 

design cycle can be shortened, and the number of real prototypes to be constructed can be 

reduced. 

A subset of VHDL constructs was selected to describe the performance and 

behavioral models. The VHDL constructs selected are powerful enough to describe the 

behavior and function of any hardware systems, yet simple enough so that models written 

using the constructs can be efficiently simulated in parallel. 

The following issues have been addressed in the proposed research. 

• Processor communication, synchronization 

• Event queue manipulation 

• Deadlock handling in conservative mechanisms 



•     Granularity of each computation between synchronization points 

Using VHDL benchmark suites, the performance of the developed techniques on the 

SP2 and Origin 2000 has been compared with that of other simulation techniques. The 

performance of the proposed techniques was evaluated in terms of the following criteria: 

simulation cycles, parallelism, maximum event queue size, speed-up, and memory space 

reduction. 

1.5 EXTENSIBILITY 

Another goal of this simulation project was to ensure the portability and extensibility 

of the simulations. The simulation kernel is completely separated from the simulation 

object model. The simulation kernel only contains simulation protocol objects, such as 

TimeWarp, SynchObj, and ChandyMisraObj, etc. It does not know what object model is 

used to simulate the target system. On the other hand, the simulation object model does 

not know the simulation protocols at all. It only defines how target system objects should 

be translated into simulation objects. Thus once the target system has been translated into 

simulation objects using the object model, the resulting C++ code may be run on any 

parallel platform. 

The end user only needs to select the parallel simulation protocol (TimeWarp, 

SynchObj, etc.) and set up the initialization parameters. The simulation kernel will then talk 

to the selected simulation protocol and run the simulation. 



1.6 MAJOR TASKS 

The following is a list of major tasks performed to implement the parallel VHDL 

simulator: 

• Design and implement the Simulation Object Model. Simulation objects will 

inherit properties (such as member functions) from these objects. 

• Select a subset of VHDL constructs that are critical to describe the 

performance and behavioral models. 

• Selected VHDL Construct Subset. The following VHDL constructs have been 

selected as goals for the translation: 

Delay Mechanism : transport delay and inertial delay. 

Data Types: bit, integer, real, array types, record types, enumeration types, 

constants. 

Sequential   Statements:   signal   assignment   statement,   variable   assignment 

statement, multiple waveforms in one signal assignment, if-then-else, for loop, 

while loop, case statement, wait statement, logic/arithmetic operations. 

Concurrent Statements: process statement with sensitivity list, concurrent 

signal assignment statement,  component instantiation  statement, generate 

statement, and conditional signal assignments. 

These selected VHDL constructs are powerful enough to describe the behavior and 

function of very complicated hardware systems, yet they are simple enough so that a 

model written using these constructs may be efficiently simulated in parallel. 

• Develop the Front End Interface which generates C++ programs from VHDL 

descriptions using the object model. The task of the Front End Interface is 

implementing these VHDL constructs. To translate VHDL into C++, the Front 

End Interface has to face the following problems: 

VHDL is a very complex and rich language. Translating its constructs requires 



full understanding of its semantics and compiler techniques. 

There is no direct mapping between the two languages. Some intermediate 

form must be used before the translation is performed. 

As a hardware description language, VHDL has some unique features, such as 

the "wait" statement. To keep the correct semantics of these features, the 

object model must implement mechanisms to support them. 

The Parse Tree approach is a common method used to solve the translation 

problem. Generally, a parser is used to parse the source language and generate 

a parse tree. Translation is then performed by traversing the parse tree and by 

publishing actions at each tree node. 

The parse tree can be constructed using either the source or the target 

language constructs, or some intermediate forms. The intermediate form 

approach is also used in this project. The SAVANT [31,34] software package 

is used as the basis to implement the Front End Interface. SAVANT has 

developed a VHDL parser (SCRAM) and a set of intermediate forms (the 

AIRE specification [33]), which is used to generate the parse tree. 

Design and develop the general structure of Cockpit, the main module of 

parallel simulator. 

Develop algorithms and data structures of event queue handling for   parallel 

simulation. 

Implement the Benchmark programs to measure the efficiency of parallel 

programs. Perform benchmarking on SP2 and Origin 2000. 



2. PARALLEL SIMULATOR 
SYSTEM ARCHITECTURE 

The simulation kernel of this project is designed to run general parallel 

simulations. It is not designed only for VHDL simulations. The kernel is 

implemented in C++. To simulate any real world system, a C++ description of 

the target system must be provided. This description must include domain objects 

and their interconnection information. The function of the Front End Interface is 

to provide such C++ descriptions for the system to be simulated. The Front End 

Interface has to use the pre-defined object model to generate the C++ code. 

VHDL 
Model 

C++ models 

C++ models 
C++ models 

^ C++ models 
Tables 

I 
Parallel Code 

c ' - --  
_ Scheduler 
o ■  

c ■, -  

]g Event Handler 

P -:  
i Communicator 
t '  

Figure 2.1 Parallel Simulator Block Diagram 

10 



2.1 MAJOR MODULES 

The parallel VHDL simulator software suite is broken into five modules: 

• Front End Interface, which generates C++ classes and object interconnection 

information from VHDL descriptions, using the SAVANT scram VHDL analyzer. 

• Partitioner, which distributes C++ objects into processing elements of a parallel 

computer. 

• Cockpit, which is the main program module of the parallel simulator. It reads input 

(test) vectors, initializes modules, starts simulation, orchestrates other modules, and 

detects the termination. 

• Event Scheduler, which manages events and schedules them according to parallel 

simulation protocols. For event handling and scheduling, it adopts a Time-Warp 

mechanism. 

When simulating VHDL systems, the Front End Interface will generate C++ 

code from VHDL source code. It will generate C++ classes corresponding to 

VHDL objects and their interconnection information. This is basically a 

translation from one language to another. 

11 



3. OBJECT MODELING 

In practice, object modeling aims to be suitable for the representation and manipulation of 

complex objects of engineering design. In most current simulation systems, users must 

know the parallel platforms and the simulation technique to develop the model. As a new 

simulation technique is invented and new hardware introduced, the models they developed 

are not reusable, and must be modified. Moreover, the modeling techniques are different 

for each application domain. 

There has been much research work in modeling simulation. Several simulation 

languages have been proposed including Simula, GASP, GPSS, CSIM, and Sim++. In 

general, they can be classified into three different approaches: 

• an approach which is limited into a specific application domain, 

• a fixed model for discrete event simulation 

• a new simulation language to model the objects 

In these approaches, the application domain is limited and the system is not extensible. 

Modifying simulation models frequendy requires changing the simulation scheme 

employed. Moreover, adding a new simulation mechanism or modifying data structures 

may affect the models already developed. For example, the Tyvis simulator [32] is 

specifically targeted for parallel VHDL simulation using Time Warp. In this approach, all 

objects are a subclass of Time Warp objects. Therefore, adding a new simulation scheme 

requires changes of all models already developed. DEVS [29] has been proposed by 

Ziegler as a model of distributed event simulation. All objects must be modeled under 

DEVS formalism. Even though this approach may have the advantage of introducing the 

formalism, it puts a burden on the modeler in a certain application domain. Simulation 

languages such as Yaddes[21], Maisie[3], SIMA[23] and MOOSE[12,14] have been 

proposed to aid the user to develop models. These languages are also associated with a 

fixed set of pre-selected set of simulation mechanisms. Yaddes is a distributed event driven 

specification language that resembles Yacc and Lex. A Yaddes program is translated into a 

12 



C program which is later linked together with a run time support library. SPEEDES [25] is 

a C++ based simulation environment developed at the Jet Propulsion Lab which supports 

sequential, Time Warp [15], and Time Bucket Algorithms. In SPEEDES, end users may 

adjust a predefined set of parameters to improve the speed. 

Only a few research results have been reported on the modeling and the performance of 

parallel simulators. Maisie is developed for efficient execution of the simulator. Depending 

on the hardware platforms, the complexity of the model, and the frequency of messages 

generated, the performance of parallel simulation varies gready. Most of the parallel 

simulators discussed above require the end user to provide their own models as the 

simulation scheme changes. The only exception is Maisie. In Maisie, objects must be 

defined using Maisie language. 

Experience has shown that simulation is evolutionary in nature. While requirements 

change, the system being simulated also changes. The modeling should be less resistive to 

such changes, so the maintenance of the evolving system will be much easier [6]. In this 

section, we outline our simulation engine that is developed using an object-oriented and 

layered approach. Our proposed object modeling technique has the following features. 

• It allows users to model complex objects which consist of different type of objects 

with various level of complexity. 

• It is simple so that the modeler should be able to model the objects in stepwise 

refinement. The object modeling technique must provide a way of hiding the 

information so that modelers and users are not overwhelmed by the details of the 

objects. 

• It separates models and simulation scheme so that modelers should be able to develop 

models without knowing the simulation scheme employed. 

• It provides a mechanism for parallel programmers to develop library modules and data 

structures independent from simulation models. 

13 



3.1 OBJECT MODEL OF THE SIMULATION ENGINE 

Our models are cleanly separated from the execution environment, and parallel platform. 

There are three types of objects in our proposed modeling: Application Objects, Simulation 

Objects, and Simulation Scheme Objects. Application Objects model the behavior of objects in 

the application domain to be simulated. They can be developed by modelers of a specific 

application domain, and are independent from the simulation schemes and hardware 

platforms. Simulation Scheme Objects depend on simulation scheme used, and include all 

library modules necessary to run the simulator on a parallel platform. They form the core 

of the simulation engine, and are developed by parallel programmers with expertise in 

Time Warp and Chandy-Misra schemes [19]. The system to be simulated consists of many 

Application Objects. An end user selects the simulation scheme to be used, and instantiates 

Simulation Application Objects (Simulation Objects in short). As shown in Figure 3.1, a 

Simulation Object inherits behaviors and properties from Application Objects, and parallel 

run time methods from the Simulation Scheme Objects. For example, 166MHz CPU and 

200MHz CPU inherit their instruction set from the Pentium class object. To simulate a 

computer system using Time-Warp, an end-user instantiates an object that inherits its 

behavior from the 200MHz Pentium object, and its run-time environment and data 

structures from TW-OBJ, a Time-Warp object. 

Simulation Scheme Objects 

Application Objects TW Kernel CM Kernel Svnc Kerne) 

TWObj CMOBj SyncObj 

MMX     Pentium       Intel 486DX 

Z3Z 
166MHz 200MHz 

Model developer 
muftijjle Inheritance 

Parallel Proarammer 

AppObj 

Figure 3.1 Object Models 
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The modelers populate the libraries of object models independent from the simulation 

scheme. The rationale of our approach is to allow the front end user to use the application 

objects developed by the modeler freely. Our object modeling technique provides freedom 

to three parties of the simulation arena: modelers, parallel programmers, and front end 

users. Parallel programmers (simulation scheme experts) may concentrate on providing 

various parallel simulation methods. In other words, once the modeler develops 

Application Objects, the same objects can be simulated with other simulation schemes, 

without remodeling them for the new simulation scheme. 

Application Objects are organized using the inheritance mechanism among them. 

Therefore the modeler, with minimum knowledge of modeling language and object 

oriented modeling, is able to create a library of objects. The front-end user, who simulates 

the system, mixes and matches the models developed by modelers and the simulation 

scheme developed by parallel programmers. The simulation scheme class defines the data 

and methods that each simulation object needs to operate within the system. This class can 

be viewed as the kernel of the simulation and any type of the simulation domain can use 

that scheme via its interfaces. Depending on a particular simulation scheme, a simulation 

scheme object is created. The simulation scheme objects include all the necessary methods 

for that specific scheme. 

A Simulation Application Object (Simulation Object) is an instance of a class that is 

obtained from integration of the Application Object class and Simulation Scheme class. It 

contains the implementation of the methods of the simulation scheme inherited from 

Simulation Scheme Objects. It inherits its behavior and attributes from Application 

Objects. For the simplicity of implementation and portability, we used the template class 

approach rather than the multiple inheritance mechanism. A Simulation Object is 

responsible for simulating the single object and generating events. 

The following class definition shows the skeleton of an Application Object. Other 

instance variables, member functions, and class relationships can be added into the 

15 



definition. If the parent class of the object has member functions of instance variables, the 

object does not need to include these fields. Consider the following example. We want to 

model an 8-bit ALU in the design of 8-bit microprocessor. All components of an 8-bit 

microprocessor share common characteristics, such as design rules, bus width, minimum 

gate delays etc. Therefore it is a subclass of 8-bit components. Suppose that the behavior 

of the 8-bit ALU has the following specifications: 8-bit Input port and Output port, 6-bit 

control line, and 8-bit addition and subtraction. Later ALU8M can be modeled which is a 

special case of ALU8 by providing multiplication and 

division operations. This specialization can be accomplished 

by making ALU8M a subclass of ALU8, and 

inheriting operations of ALU8M from ALU8: 

8-bit components 

Shift Register 

X 
ALU8 

ALU8M 

Here is the sample code for the ALU object: 

class ALU8 { 
public:   // Methods that simulates the behavior of the object 

void addO; 
void subtractO; 
void exceptionO; 
void executeProcessO; }j 

class UserState : public BasicState { // input and output port of the object 
InSignal<int>   x[8], y[8], opcode[2];   //opcode denotes the operation 
OutSignal<int> 2 [8];   }; 

The method executeProcessO simulates the behavior of the object. This is the main 

part of the modeling and the modeler just needs to plug the behavior of the object into the 

class definition, by conforming to the names that are declared within the class. In this 

sample code, we declare two other functions, add() and subtractO that are used within 

executeProcessO method. 

To create a model of an ALU with more functions, such as multiplication and division, we 

can simply model by inheriting from ALU8: 

class ALU8M : public ALU8 { 
public: 
void multiplyO; 
void divideO; 
void executeProcessO;}; 
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To simulate the ALU8M, the behaviors of the 8-bit ALU such as add, subtract, and 

exceptions are inherited from the class of ALU8. ALU8M has its own functions, multiply 

and divide, which are not defined in ALU8. Moreover, ALU8M can implement its own 

methods for ADD and SUB. 

The sample C++ code is provided as follows: 

void ALU8M::executeProcess() { 
switch (opcode)      { 

case 0: add 0> break; 
case 1: subtract^;   break; 
case 2: multiplyO;break; 
case 3: divide 0;break; 
default- exceptionO;break;      } 

} 

3.2 SIMULATION ENGINE: LOGICAL PROCESS AND SIMULATION 

OBJECT 

Each processor is an instance of a logical process (LP), which is the simulation engine of 

the processor. Logical Process is responsible for the global flow-control of the simulation. 

It instantiates the simulation objects assigned to that particular processor. During the 
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Figure 3.2 Logical Process 

execution of the simulator, LP handles the communication of simulation objects via 

messages, schedules events by selecting simulation objects to be executed in next 
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Simulation cycle, and computes the Global Virtual Time. The LP object depends on the 

simulation scheme. It consists of Simulation Scheme Objects. Figure 3.2 shows the LP 

object organization. The Scheduler schedules events based on scheduling policy. 

Dispatcher reads input messages from the buffer and places events into the event queue of 

the corresponding simulation object. Messages to be sent are handled by the collector, 

which aggregate messages and send them according to the communication policy. 

3.3 PARTITIONING 

We have developed three different partitioning schemes: random, level, and duplication. 

In random partitioning, objects are assigned to processors randomly so that each processor 

has an equal number of objects. In level partitioning, objects are partitioned according to 

depth such that objects in the same depth (from the primary input) are assigned to the 

same partition. It is well known that random partitioning in general has good performance. 

We achieved similar performance except a few cases, in which case we used level 

partitioning. Another scheme we have used is duplication of objects. If a certain object, 

particularly an input object, has a high output degree then it is much better to duplicate the 

object. Indeed duplicating objects increases the activity rate and significantly improves the 

speed of parallel simulation. 
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4. FRONT END USER INTERFACE 

The Front End Interface analyzes VHDL source and generates C++ according to the 

Simulation Object Model, particularly application objects and simulation objects. The 

major purpose of the Front End Interface is to translate VHDL descriptions into C++ 

code according to the simulation object model. The Simulation Kernel will then compile 

and link with the C++ code to simulate the VHDL system. 

The SAVANT software package is used as the basis for the Front End Interface. 

SAVANT has implemented a VHDL analyzer to parse the VHDL source code and 

generate a parse tree using the Intermediate Forms defined by the AIRE standard. 

SAVANT has also implemented a C++ Publisher, which uses the parse tree to generate 

C++ code for the TyVIS VHDL simulation kernel. TyVIS is not compatible with the 

simulation kernel of this project. As a result, the C++ code can not be used. The 

SAVANT C++ Publisher was then modified to generate C++ for this project. 

SAVANT implements the AIRE standard using a layered approach. The C++ 

Publisher is implemented at the IIRScram layer as a virtual function _publish_ccQ. To 

modify the publisher, an IIRPvhdl layer is added to the SAVANT class hierarchy. The 

_publish_ccQ function is overloaded in this layer so that the _publish_cc() of the 

IIRScram layer is shadowed. When the publisher is called again, the _publish__cc() 

function in the IIRPvhdl layer is called to generate C++ code for our own simulation 

kernel. 

A subset of critical VHDL constructs have been selected and implemented by 

modifying the SAVANT Publisher. Many tests have been conducted on these constructs to 

ensure their semantic correctness. Up to now, 47 IIRPvhdl layer classes have been added 

to the SAVANT class hierarchy and about 6000 lines of C++ code has been developed. 
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In this project, simulation objects are separated from the simulation kernel, which 

handles different parallel simulation protocols. This ensures the extensibility and portability 

of simulations. On the other hand, using Intermediate Forms (AIRE) enables the 

translation between languages with no direct mapping (VHDL and C++). Also, adding an 

extra layer (IIRPvhdl) into the SAVANT class hierarchy modifies the behavior of the 

SAVANT Publisher without changing the SAVANT source code. This makes upgrading to 

new version of SAVANT much easier. 

A big drawback of this approach is that each time a change is made to the source code, 

the program has to be recompiled and linked again to generate the new executable file. 

Because the size of the executable file is quite large (35MB), this process usually takes a 

very long time (tens of minutes). This greatly reduces the efficiency of user modifications. 

SAVANT is also an on-going project. It still does not support some VHDL features, such 

as bus signals. This software package also contains some bugs. 

4.1 THE OBJECT MODEL 

This section describes the details about the Object Model. The object model defines a 

"BasicObject" class which characterizes the common features of all simulatable objects. 

When translating a target system into simulatable classes, the BasicObject class should be 

used as the parent class of all resulting simulatable classes. The BasicObject class defines 

input signals, output signals, states, and a method called executeProcess(). Through the 

input and out signals, BasicObject classes can interact with each other. States are used to 

keep private information for the BasicObject itself. The executeProcess() method describes 

the behavior of the object (how the output signals should be changed according to the 

input signals). The input signal, output signal and state are also classes defined by the 

object model. All signals and states must be "registered" before they can be used. Please 

refer to section 3 for details about the BasicObject class, the signal classes, and the state 

class. 

When translating a VHDL system into C++ code, each VHDL process is translated into a 
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simulatable class. The "in" signals in the VHDL process are translated into the input 

signals in the simulatable class. The NXout" signals are translated into output signals. The 

process variables are translated into states. The sequential statements of the VHDL process 

are translated line by line into the executeProcessO method. 

Generally, each C++ class has the following items: 

Declaration of input/output signals and states. 
Registration of input/output signals and states. 
Initialization of input/ output signals and states. 
The executeProcessO method. 

FORMAT OF OBJECT CLASS 

The basic format of a class is like this: its declaration shows BasicObject is its parent class; 

it has a data declaration section, a constructor, and a executeProcessO method. All data 

members and methods are defined as public (so that the simulation kernel can access them 

directly). In the constructor, all signals and states are registered and initialized. 

The following code shows an example C++ class generated using the object model. This 

example only shows a general structure of the object model C++ classes, it is not the exact 

code. Appendix B shows the VHDL source code of an AND gate. The exact C++ code 

for this AND gate is shown in Appendix C. 

class DFF : public BasicObject 
{ public: 

InSignal D, CLK; // declarations 
OutSignal Q; 
State prev; 

DFF(): BasicObjectO {        // registrations 
registerlnSignal (&D); 
registerInSignal (&CLK); 
registerOutSignal (&Q); 
registerState (fcprev); 

D=X; CLK=X; prev=X;     // initializations 
Q=Y; 
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void executeProcess () {      // actions 
int val; 
if (hasEvent(&D) && (CLK == '1')) { 

val = D; 
if (prev != val) { 

prev = val; 

if (prev == '0')  D = 0; 
else if (preve == '1") D =1; 
else D = val; 

}  }  } 
}; 

VHDL variables are declared within processes (global variables have not been 

implemented yet) and are translated into "states". In contrast to signals, states are declared 

without a prefix. For example, if a VHDL process declares a variable as: variable a : bit, 

its C++ declaration is SavantbitType a. 

Signals and variables can have initial values. It is in the constructor that their initial 

values are granted. Later sections will address the issue on how to find which signals and 

variables are used by a process and how to retrieve their initial values. 

The Constructor 

The class constructor will register signals and variables and set their initial values. 

To register signals and states, the constructor will call functions declared in the 

BasicObject class. Table 4.1 shows these functions. 

Input Signal RegisterlnSignal(&signal, sizeof(signal)) 
Output signal RegisterOutSignal(&signal, sizeof(signal)) 
State registerState(&state, sizeof(state)) 

Table 4.1 Functions For Signal/Variable Registration 

No special function needs to be called to initialize signals and states. The simple 

C++ assignment operator is used. For example, if the initial value of signal a is 0, a is 
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initialized by a = 0. If the signal or state doesn't have an initial value, system defined initial 

values are used. Table 4.2 shows the predefined initial values. 

These initial values are defined in file SavantGlobal.h shown in Appendix D. 

Signal/State Initial Value Definition 
Input signal X #define X-l 
Output Signal Y #define Y-l 

State X As Above 

Table 4.2 System Defined Initial Values 

THE EXECUTEPROCESS0 METHOD 

The executeProcessO method of the object class describes the actions of the 

VHDL process. It is a line to line translation of VHDL statements to C++ code . 

A VHDL process is composed of VHDL sequential statements, such as signal 

assignment statement, variable assignment statement, if statement, etc. These VHDL 

language constructs all have corresponding IIR representations. The way to translate these 

VHDL language constructs into C++ code is to call the _publish_cc() function in their 

corresponding IIR nodes in the IIR parse tree. Since each IIR class has its own 

_publish_cc(), different semantics of different VHDL constructs can be translated by 

implementing the _publish_ccQ method differendy. Later sections will describe this 

approach in detail. 

The executeProcessO method is defined in the BasicObject class. The simulation 

kernel simulates the VHDL description by calling the executeProcessO method of each 

VHDL simulation object. 

MODIFICATION GUIDELINES 

In the SAVANT project, the IIRBase layer and the IIR layer are 
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well defined by the AIRE standard. They are well documented by the AIRE standard [33]. 

The IIRScram layer implemented the VHDL Analyzer and the Publisher. This layer 

contains most of the programming tasks. However, this layer is very poorly documented. 

Actually there is no documentation at all which describes the programming details of the 

IIRScram layer. 

The C++ code is generated by traversing the IIR parse tree. 

The information collected by the Analyzer has to be used to perform the publication. 

Since the IIRScram layer has no documentation, the only way to find out all this 

information is to use a debugger to trace through the program. In this project, the GNU 

gdb is used to debug the SAVANT executable file, Scram. The basic debugging process is 

to first set a break point at the _publish_cc() method of the IIRScram class being 

modified, then trace into all pertinent sub-routines and relevant data members. There are 

227 IIR classes defined and the size of the Scram file is about 35MB. Thus the process of 

using a debugger to debug the file to find out some information can be extremely time 

consuming and painful. 

The following are the general steps taken to modify the SAVANT publisher: 

• Look at the AIRE standard to find out what public data member and public functions 

are declared by the target IIRBase class. These data and functions will be used in 

generating the C++ code. 

• Debug the _publish_cc() function of the target IIRScram class to see how this 

information is used. 

• Create a new IIRPvhdl layer class which implements a new _publish_cc() method to 

shadow its corresponding IIRScram layer class. 

4.2 Implementation Details 

This section discusses the details of how the IIRPvhdl layer classes are generated. 

As mentioned earlier, this project tries to handle only those VHDL constructs that are 

deemed as essential to VHDL simulation. It does not try to handle all VHDL language 
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constructs. This section will use the VHDL construct as the unit of discussion. 

How to Publish 

SAVANT defined a utility class called "switch_file". This class deals with input/output 

streams. It defines a method 

void set_file(char *name, char *ext), which is used to set the name of the output file for 

the Publisher. If a file with the name "name.ext" already exists, future outputs of the 

Publisher will be appended to the end of this file. Otherwise, a new file with that name is 

created and future outputs of the Publisher will be written to the new file. In 

IIRScram.hh, two global variables are declared as follows: 

extern switch_file _vhdl_out;  //file for vhdl output 
extern switch_file _cc_out;    //file for c++ output 

The IIRScram class is the root of the IIRScram layer classes. Thus the above two 

global variables could be accessed by any IIRScram class. The _vhdl_out is only used to 

publish VHDL source code, while the _cc_out is only used to publish C++ code.   For 

example, to publish code "i +=1;" to file "test.cc", you only need to do the following: 

_cc_out.set_file(wtest",   ".cc"); 
_cc_out  <<     wi  +=  1;"; 

Any IIRPvhdl layer class is derived direcdy from a IIRScram layer class. As a 

result, all IIRPvhdl layer classes can also access _cc_out and publish C++ code to a 

named file. 

Where to Publish 

In SAVANT, each class corresponding to a VHDL process will generate two files, 
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a ".hh" file and a "cc" file. When all the C+ + files have been generated, a "Makefile" is 

created to tell the TyVIS simulation kernel how to link all the files together. 

In this project, all C++ code is published in the file "Classes.h". The constructor 

and the executeProcess() method are all inline functions. Thus there is no need to create 

a Makefile. The simulation kernel can simply include the "Classes.h" file to get all class 

definitions. 

The included file is compiled together with simulation objects and utilities we have 

developed. 

How to Insert an IIRPvhdl Class 

The sole purpose of adding an IIRPvhdl layer is to shadow the _publish_cc() 

functions of the IIRScram layer classes. To do this, an IIRPvhdl layer class has to be 

derived direcdy from the IIRScram layer class. The IIR layer class will then be derived 

from the IIRPvhdl layer class instead. Thus when an IIR layer node calls the 

_publish_ccO function, it will call the _publish_cc() declared in the IIRPvhdl layer class, 

not in the IIRScram layer class. 

As an example, let's look at how to insert the IIRPvhdl_ProcessStatement class 

between the IIRScram_ProcessStatement and the IIR_ProcessStatement class. The original 

IIR ProcessStatement.hh is like this: 

#include "IIRScram_ProcessStatement.hh" 

class IIR_ProcessStatement : public 
IIRScram_ProcessStatement { 

• • • 
} 

After adding the IIRPvhdl_ProcessStatement class, the 
IIR_ProcessStatement needs to be derived from the 
IIRPvhdl ProcessStatement class. The 
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IIR_ProcessStatement.hh is then modified like this: 

#include "IXRPvhdl_ProcessStatement.hh" 

class IIR_ProcessStatement : public 
IIRPvhdl_ProcessStatement { 

On the other hand, the IIRPvhdl_ProcessStatement has to be derived directly 
from the IIRScram_ProcessStatement class. The IIRPvhdl_ProcessStatement.hh looks like 
this: 

#include "IIRScram_ProcessStatement.hh" 

class IIRPvhdl_ProcessStatement : public 
IIRScram_ProcessStatement { 

} 

Other IIRPvhdl layer classes should be added to the class hierarchy in a similar 

manner. 

The IIRPvhdl_DesignFile Class 

The predefined IIR_DesignFile class represents the textual contents of a design 

file. These contents may include one or more IIRJLibraryUnits and/or one or more 

IIR_Comments. The IIR_DesignFile class defines a public data member 

IIRJLibraryUnitList library_units. This data member is a list of entity declarations and 

architecture declarations which cluster all VHDL library units into a design file together, so 

that they could be accessed one by one. 

The IIRPvhdl_DesignFile class has basically 3 functions: 

• Use preprocessor #ifhdef... #define to protect the "Classes.h" file. 

• Include some "h" files and use "typedef' to define some data types, like 
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SavantbitType, SavantintegerType, and SavantrealType. 

•     Call library_units._publish_cc() to let the lower level tree node publish C++ code. 

The implementation of this class is pretty straightforward. Please refer to [34, 

IIRPvhdl_DesignFile.hh, IIRPvhdl_DesignFile.cc] for details. 

The _publish_ccO method of IIRScram_LibraryUnitList is not overloaded 

because it has already done the correct things. This method goes through each library unit 

in the list and calls their _publish_cc() method. This is the desired behavior of the 

_publish_cc() for IIR_LibraryUnitList. As a result, there is no need to define an 

IIRPvhdl_LibraryUnitList class to shadow the IIRScramJLibraryUnitList class. For 

implementation details of the IIRScramJLibraryUnitList class, please refer to [34, 

IIRScram_LibraryUnitList.hh, IIRScram_LibraryUnitList.cc]. 

From here we can see that if the _publish_cc() function of an IIRScram layer 

class has implemented the desired functions, then there is no need to define its 

corresponding IIRPvhdl layer class to shadow it. As a result, not every IIRScram layer class 

has a corresponding IIRPvhdl layer class. 

The IIRPvhdl_EntityDeclaration Class 

The predefined IIR_EntityDeclaration class represents VHDL entities. It is a child 

class of the IIR_LibraryUnit class and contains several predefined public data elements 

shown in Table 4.3. 

DATA MEMBER TYPE DATA MEMBER NAME 

IIR_GenericList Generic_clause 
IIR_PortList Port_clause 
IIR_DeclarationList Entity_declarative_part 
IIR_ConcurrentStatementList Entity_statement_part 
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IIR_DesignUnitList Architectures 

Table 4.3 Predefined Public Data Elements of 
IIR_Entity Declaration 

These data elements are all lists which keep entity related information, such as 

generic declarations, ports, etc. The IIRScram_EntityDeclaration class uses all of them in 

its _publish_cc() method. None of them have been used in this project so far. The 

desired behavior of the IIR_EntityDeclaration is to publish nothing at all. Thus the 

_publish_cc() method of IIRPvhdl_EntityDeclaration class is just empty. 

It is possible to make changes to this class if new features 

need to be implemented in the future, such as generic constants. It probably would require 

corresponding changes in other parts of the front end interface. This is left to the decision 

of future participants of this project. 

The IIRPvhdl_ArchitectureDeclaration Class 

The predefined IIR_ArchitectureDeclaration class represents one of several 

potential implementations of an entity. Like the IIRJBntityDeclaration class, it is also a 

child class of IIR_LibraryUnit. 

The IIR_ArchitectureDeclaration Class has several predefined public methods and 

public data elements. Among them, the IIR_EntityDeclaration * get_entity() method 

retrieves the pointer to the entity to which the architecture is associated. The 

IIR_ConcurrentStatementList architecture_statement_part data member is a list 

pointing to all the current statements in the architecture body. 

The IIRPvhdl_ArchitectureDeclaration class does two things. First, it prints a 

message to the standard output showing the name of the architecture being processed. 

Second, it calls the _publish_cc() method of architecture_statement_part which causes 

the higher lever nodes in the parse tree to publish. The first task is performed by 
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printing the names to standard output "cerr". To get the name of the architecture, the 

_get_declarator() function is called. This function is defined as a virtual function in the 

IIRScram class. It can be used by any node in the parse tree to get its declarator string. 

The implementation of this class is straightforward. For details please refer to [34, 

IIRPvhcU_ArchitectureDeclaration.ee]. 

The Process Statement 

The SAVANT predefined IIR_ProcessStatement class represents a sequential 

declarative region and single thread of execution. Such processes must appear within an 

architecture, concurrent block statement or concurrent generate statement. 

The VHDL process is the translation unit of the C++ publisher. Each process will 

be translated into a simulation class. In the simulation class, signals and variables that are 

used in the VHDL process are translated into C++ data elements and registered to the 

simulation kernel. This section discusses how to translate VHDL process into simulation 

class. 

DATA ELEMENTS 

There are two predefined public data elements in IIR_ProcesssStatement class: 

• IIR_DeclarationList process_declarative_part, which is a list of declaration items, 

such as local variables. 

• IIR_SequentialStatementList process_statement_part, which is a list of all 

sequential statement in the process. 

The IIRPvhdl_ProcessStatement.hh declares several public and private data 

elements. There are two public data elements: 

• IIR_Char *class_name, which is a character pointer used to keep the name of 
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this class. This information will be used when generating the interconnection 

information. 

• IIR_Int32 class_id, which is an integer used to keep the ID of the class. In the 

_publish_cc() method of IIRPvhdl_ProcessStatement class, a variable static int 

type_id=0 is declared to generate an unique ID for each simulation class. The 

class_id uses the value of type_id. It will be used in generating interconnection 

information. 

The IIRPvhdl_ProcessStatement.hh declares five private data elements. They are all 

used as local variables. These data elements are: 

• set<IIR_Declaration> sig_in_list, which is the set for input signals. 

• set<IIR_Declaration> sig_out_Iist, which is the set for output signals. 

• int in_sig, which is used to count the total number of input signals. 

• int out_sig, which is used to count the total number of output signals. 

• int state_num, which is used to count the total number of states. 

These variables will be used when publishing the constructor of the BasicObject class, 

which needs to know the number of input/output signals and states in the VHDL process. 

INPUT/OUTPUT SIGNALS 

Before further discussion, it is necessary to define "input" signal and "output" 

signal first. In a VHDL process, if the value of a signal is referenced, this signal is an input 

signal. For example, signals appearing on the right hand side of signal assignment 

statements or "if statements are input signals. If a signal's value is changed in the VHDL 

process, it is an output signal. For example, signals appearing on the left hand side of signal 

assignment statements are output signals. It is possible that a signal is both an input signal 
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and an output signal. For example, signal a in VHDL statement "a <= not a" is both an 

input signal and an output signal. 

In VHDL, both the entity declaration statement and architecture declaration 

statement declare signals. Within an architecture body, there could be several processes. 

This means a VHDL process may not cover all signals declared by the architecture. Only 

those signals that are covered by the process should be translated when translating this 

process into a simulation class. This presents the problem of finding what signals are used 

by the process. 

The SAVANT VHDL Analyzer has solved this problem. In IIRScram.hh, a virtual 

function: 

void _get_list_of_input_signals(set<IIR_Declaration>* list) 

is declared. Its function is to add pointers of all input signals associated with an IIR node 

to "list". Since "list" is defined as a set object, the same signal pointer will be added to the 

set only once (please refer to [34, set.hh] for details). This function is overloaded by all 

other IIRScram layer classes. 

The IIRScram_ProcessStatement class defines this function like this: 

void IIRScramJProcessStatement:: 
_get_list_of_input_signals(set<IIR_Declaration>* list) { 

process_statement_part._get_list_of_input_signals(list); 
} 

The process_statement_part data element is of type 

IIR_SequentialStatementList. In the IIRScram_SequentialStatementList class, the above 

function is defined as follows: 

void IIRScram_SecruentialStatementList:: 
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_get_list_of_input_signals(set<IIR_Declaration>* list) { 
IIR_SequentialStatentent* stmt = first (); 
for(; stmt != NULL; ) { 

stmt->_get_list_of_input_signals(list); 
stmt = successor(stmt); 

} 
} 

As a result, each sequential statement in the VHDL process will call its 

_get_list_of_input_signals() to put its input signals into "list". Similarly, another virtual 

function: void _get_signal_source_info(set<IIR_Declaration>* siginfo) is defined in 

IIRScram.hh to collect output signals using set. 

The set utility class defines a function named make_list(). This function first 

creates a list that contains all data in the set then returns the pointer of the list. After the 

input signal set and the output signal set have been obtained, the two sets call the 

make_list() function to create two signal lists. 

In file IIKPvhdl.hh, two global variables are declared to keep the two lists: 

extern dl_list<IIR_Declaration> *_proc_in_sig_list; 

extern dl_Hst<IIR_Declaration> *_proc_out_sig_list; 

These two signal lists will be used by other IIRPvhdl layer classes, such as 

IIRPvhdl_IndexedName. In SAVANT, it is possible that the same array element appears 

more than once in the input or output signal list. The reason is that SAVANT generates an 

IIR_IndexedName node each 

time it encounters an array element signal. For other of signals, SAVANT generates only 

one IIR node, no matter how many times this signal appears. For example, for the 

following VHDL process: 

process begin 
a <= c and arr(l); 
b <= c or arr(l); 

end process; 
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SAVANT generates only one IIR node for "c", but two IIR nodes for "arr(l)". 

When generating the input signal set, there is only one IIR node for "c" added to the set. 

But there are two "arr(l)" IIR nodes added. This may seem strange. The reason Savant 

does this is that TyVIS requires different object for different array element. Since the 

SAVANT publisher is TyVIS oriented, it handles this situation in this strange way. 

In our project, only one array element should be put in the signal list. As a result, a 

function named: Void _clean_sig_list_for_identicaI_eIements(dl_list<IIR_Declaration>* list) is 

defined in IIRPvhdl.hh. The function of this method is to remove multiple copies of array 

elements from a signal list. Its implementation will be discussed in later sections. After 

calling make_list() to get the input signal list and the output signal list, the 

_clean_sig_list_for_identical_elementsO function is called on both signal lists. 

WAIT STATEMENT LIST 

A VHDL process usually contains a wait statement. There is no language 

construct in C++ which directly corresponds to the semantics of the VHDL wait 

statement. As a result, wait statement has to be implemented according to its semantics. 

In SAVANT, for each process, it is necessary to find out the number of wait 

statements and keep them in a list. To achieve this, SAVANT defines a virtual function: 

void Jbuild_wait_list(dl_list<IIRScram_WaitStatement> *) in the 

IIRScram_SequentialStatement class. Since IIRScram_SequentialStatement class is the root 

class of all sequential statement classes in the IIRScram layer, each sequential statement 

class will inherit then overload this function. For example, both IIRScram_IfStatement 

class and IIRScram_WhileStatement class are a child class of the 

IIRScram_SequentialStatement class. They may all contain a wait statement. As a result, 

they all overload the _build_wait_list() function. 
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The IIRScram_ProcessStatement class defines a public data element named 

dl_list<IIR_WaitStatement> _wait_stmt_list to keep the wait statement list. To build 

the list, a while loop is used to call the _build_wait_list() function of each sequential 

statement node in the process_statement_part data element. 

The code is as following: 

stmt = process_statement_part.first(); 
while (stmt != NULL) { 
stmt-> _build_wait_list ((dl_list<IIRScram_WaitStatement> 
*) &_wait_stmt_list) ; 
stmt = process_statement_part.successor(stmt); 
} 

Details on how to handle the wait statement will be discussed in later sections. 

NAME OF CLASS 

Since each VHDL process is translated into a class, it is important that they all 

have different names. To achieve this, the _publish_cc() method of 

IIRPvhdl_ProcessStatement class defines a static integer type_id. The initial value of 

type_id is 0. Each time after publishing a class, the value of type_id is increased by one. 

Since type_id is used as part of the class's name, each class will have a different name. 

The naming scheme of a class is like this : "current architecture name" plus "_of_" 

plus "current entity name" plus "_class" plus "type_id". The name of the class is stored by 

the class_name data element described above. Also, each class name and its 

corresponding "type_id" is written to a file named "Classes.id" for examination purpose. 

PUBLISHING CLASS HEADER 

As discussed in previous sections, _cc_out is used exclusively to publish C++ 

code. The first thing in publishing the code is to set the output file name to "Classes.h". 
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The first line of code should be the class header, like: class class_name : public 

BasicObject. This could be done easily by the following code: 

_cc_out.set_file("Classes",   n.hn); 
_cc_out « "class " << class_name << " : public 

BasicObject" << "\n"; 

Other C++ code could be published in the same way. It is not necessary to set the 

publishing file to "Classes.h" each time new code is written to that file. Only when the 

publishing file name is changed is it necessary to change the file name back to "Classes.h". 

Also, don't forget to write "endl" to start a new line in "Classes.h". 

SIGNAL DECLARATIONS 

Signal declarations in the class are not different from the common "type + name" 

format. There are two kinds of signals, input signals and output signals. As described 

above, global variable _proc_in_sig_list is the list of input signals and 

_proc_out_sig_list is the list of output signals of the VHDL process being translated. 

To publish these signals, it is necessary to go through the two lists to publish the type and 

name of each signal. 

The IIRPvhdl_ProcessStatement class has defined two functions, 

_publish_cc_in_sig_declO and _publish_cc_out_sig_decl(), to publish input signals 

and output signals respectively. For input signals, a prefix "in_" is put to the name of each 

signal. For output signals, a prefix "out_" is put to the name of each signal. The reason for 

adding prefix is that one signal could be both an input signal and an output signal. In the 

simulation object model, these two types of signals are implemented differendy. As a 

result, this signal has to be described by one input signal and one output signal. The prefix 

is used to distinguish the two signals. 

To publish the type of the signal, IIRScram.hh has defined a virtual function void 

_publish_cc_type_nameQ. For each signal declaration, this function will publish the type 

of the signal using _cc_out. In general, SAVANT puts a prefix "Savant" and suffix 
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"Type" to each VHDL type. For example, the VHDL "bit" type will be published as 

"SavantbitType". Previous sections have discussed how to implement three basic VHDL 

data types in C++. 

Each time an input signal is published, it is necessary to increase the input signal 

counter in_sig by one. For array types, it is necessary to add the total number of elements 

in the array to the counter. To get the size of the array, the 

IIRPvhdl_ArraySubtypeDefinition class has defined a function int 

_get_array_total_element_num()- This function simply multiplies each dimension of the 

array and returns the product. Details on implementing VHDL array types will be 

discussed later. 

SAVANT has defined a virtual function IIRJBoolean _is_array_type() in 

IIRScram.hh. Its function is to determine whether a IIR node is of array type. IIR nodes of 

array type will return a boolean value true, all other IIR nodes will return false. By calling 

this function for each signal, it can be determined if this signal is an array type. 

The last thing to mention is using single array elements as input signals. In 

SAVANT, if the value of an array element is referenced as an input signal, the whole array is 

put into the input signal list (not that particular array element). This is not the desired 

behavior in this project. As a result, the IIRPvhdl_IndexedName class has overloaded the 

_get_list_of_input_signalsQ function so that single array element is put into the input 

signal list. Details about the IIRPvhdl_IndexedName class will be covered in later sections. 

The problem here is how to publish the name of the signal array element. The index of the 

array element is used as part of the name for that signal. For example, if array element 

arr(l,2) is in the input signal list, the name of this signal will be "in_arr_l_2". To determine 

whether a signal is an array element, the IIR predefined get_kind() function can be used. 

If the return value of this function is "IIR_INDEXED_NAME", the signal is an array 

element. We can then use the above naming scheme to publish it. 
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VARIABLE DECLARATIONS 

SAVANT did not implement a way to get a "variable list". To find out what 

variables have been declared in a VHDL process, the process_declarative_part data 

element of IIR_ProcessStatement must be used. The type of "process_declarative_part" is 

"IIR_DeclarationList". It is the list of declaration items in the process. It may contain 

type declarations and variable declarations. To see if a declaration item is a variable 

declaration, we can use the predefined "get_kind(}" function to get its type. If the return 

value is "IIR_Variable_Declaration", this item is a variable declaration. 

We can then publish this declaration item as a variable. 

Publishing variable declarations is similar to publishing signal declarations. The 

only difference is that no prefix is added to variable names. Also, each time after 

publishing a variable, the counter "state_num" must be increased. The same rule about 

array size applies for variable arrays. 

THE CONSTRUCTOR 

After publishing signal and variable declarations, the next step is to publish the 

constructor. Since "BasicObject" is the parent class of each simulation class, it is necessary 

to call the constructor of "BasicObject". The constructor of BasicObject uses the number 

of input signals, output signals, and states in the VHDL process as parameters (this is why 

counters "in_sig", "out_sig" and "state_num" are declared). 

The constructor basically has two tasks: to register signals and variables, and to 

assign initial values to them. The way to publish signal registrations is similar to publishing 

the signal declarations. The _proc_in_sig_list data element is used to publish input signal 

registration, and the "_proc_out_sig_list" is used to publish output signal registrations. 

The process_declarative_part is used to publish state (variable) registrations. 

If there is an input signal in_a, an output signal outjb, and a variable 
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c, then registerInSignal(&in_a), registerOutSignal(&out_b) andregisterState(&c) 

should be published to register them respectively. These three functions are declared by 

the "BasicObject" class. 

To get the initial value of a signal, the predefined "get_value(}" function is called. 

This function returns an IIR type pointer pointing to the initial value expression. If the 

returned pointer is not NULL, its _publish_ccQ function can be called to publish the 

signal's initial value. Otherwise, the rules discussed in previous sections are used to set the 

initial value of the signal. The same approach applies to setting variable initial values. 

THE "WAIT FOR" SIGNALS 

Two extra signals, in_wait_for_signal and out_wait_for_signal are declared 

exclusively to handle the VHDL wait statement. The two signals are of type 

SavantbitType. The first signal is an input signal, the second signal is an output signal. 

Their initial values are both 0. These two signals are not signals declared by the VHDL 

process. They are extra add-on signals for each simulation class. The reason to add them 

will be cleared up in later sections. 

It is important to know the registration of these two signals should be put to the 

last part of the signal registration section. 

As a result, they will be put to the end of the input and the output signal list of the 

simulation object. On the other hand, these two signals are connected directly when 

generating the interconnection information [24]. 

THE EXECUTEPROCESS() FUNCTION 

The executeProcessO function is a line to line translation of the sequential 

statements in the VHDL process. To publish all the sequential statements, the 

_publish_ccQ function of _process_statement_part is called. 
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Before calling the process_statement_part._publish_cc(), the system-publishing 

prefix is set to "inj" by calling the void _set_publish_prefix_string() function defined in 

IIRScram.hh. Once the system publishing prefix is set, all signal or variable names will 

contain this prefix when they are published. In most cases, the sequential statements in a 

process will reference an input signal, thus the prefix is set to "in_". When publishing the 

output signals, the system-publishing prefix needs to be changed temporarily to "out_". 

After calling process_statement_part._publish_cc(), the system publishing prefix needs 

to be restored to its original value. 

In addition, a static integer "P" is also declared in executeProcess(). The purpose 

of this variable is to handle the VHDL "wait" statement. It will be covered in detail in the 

section discussing the VHDL wait statement. 

The IIRPVHDL Class 

The IIRPvhdl class is the root class of the IIRPvhdl layer. The reason to add this 

class is to declare some global data elements and public functions for the IIRPvhdl layer 

classes. The following data and functions are declared in the IIRPvhdl class: 

• dl_list<IIR_Declaration> *_proc_in_sig_list, which is a global variable used to 

keep the input signal list of the current VHDL process being published. 

• dl_list<IIR_Declaration> *_proc_out_sig_list, which is a global variable used to 

keep the output signal list of the current VHDL process being published. 

The way this and the above variable is used has been discussed in previous sections. 

• IIR_Boolean _is_identical_with(IIR *obj), which is a function used to test whether 

obj and the current IIR node (*this) have the same name. The way to determine this is 

to use strstream to print out the names of these two objects. If the names are the 

same, then the function returns "true". Otherwise, the function returns "false". 
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• int _get_position_in_list(dl_list<IIR_Declaration> *list, IIR *obj), which is a 

function used to find the position of obj in list. If obj is found in list, then its position 

is returned. Otherwise, "-1" is returned. This function will call the above 

_is_identical_with(IIR*) function to test if obj has the same name of any node in 

list. 

• void _clean_sig_list_fot_identical_elements(dl_list<IIR_Declaration> *list), 

which is a function used to get rid of redundant array entry element from list. In 

SAVANT, if an array entry appears several times in a VHDL process, there will be 

multiple IIRJndexedName objects created for that array entry. Thus after the input or 

output signal list of the VHDL process is created, it is possible the same array entry 

could appear more than once in the two lists. Because each array entry object has a 

different memory address, the only way to tell two array elements are the same is to 

examine their names. This is the reason to define the _is_identical_with() function. 

It is also possible that the whole array is in the signal list, and one of its entry elements 

appears in the list. If this happens, this array entry also must be deleted from the signal 

list. The _get_position_in_list() function is used to find out the position of the 

whole array signal(the prefix of the array entry). If the return value is "-1", the whole 

array is not in the list. Otherwise, the whole array has already been put into the list and 

the array entry is deleted. 

For coding details of the IIRPvhdl class, please refer to [34, HRPvhdl.ee]. 

Signal Assignment Statement 

The predefined IIR_SignalAssignmentStatement class updates the projected 

waveform output of one or more signal drivers. It is a child class of the 

IIR_SequentialStatement class. The signal assignment may appear anywhere a sequential 

statement may appear. The IIRPvhdl_SignalAssignmentStatement class is defined to 

overload the _publish_cc() function of IIRScram_SignalAssignmentStatement class. 

Predefined Public Method and Data 
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The IIR_SignalAssignmentStatement has a predefined target method IIR* 

get_target(). Target method refers to the target of a signal assignment statement. After 

getting the IIR pointer of the target, its _publish_cc() method can be called to publish its 

name. The target is an output signal. Since the system publishing prefix is "in_", and all 

output signals should have prefix "out_", we need to change the system publishing prefix 

temporarily to "out_". After the _publish_cc() method 

of the target is called, the system publishing prefix should be changed back to "in_". 

Another useful predefined public method is IIR_DelayMechanism 

get_delay_mechanism(). A signal assignment statement either uses transport or inertial 

delay. The return value of this method should be either "IIR_TRANSPORT_DELAY" or 

"IIR_INERTIAL_DELAY". 

The IIR_SignalAssignmentStatement has a predefined data element 

IIR_Waveformlist waveform. It is the list of signal drivers (waveforms) associated with 

this signal assignment. We need to go through this list to publish all waveforms. 

Default Publishing Format 

The default format of signal assignment is to publish an C++ assignment 

statement and a assignDelayO function for each individual waveform. Figure 4.1 is an 

example of the publishing format. 

VHDL Source Code 

a <= inertial b after 1 ns, c after 2 ns; 

PUBLISHED C++ CODE 

out_a = in_b; 
assignDelay(&out_a, 1 NS, INERTIAL); 
out_a = in_c; 
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assignDelay(&out_a,   2  NS,   INERTIAL); 

FIGURE 4.1 DEFAULT PUBLISHING FORMAT OF SIGNAL ASSIGNMENT 

To publish the assigned value, the _publish_ccQ method of the 

IIR_WaveformElement class should be called. 

Both "INERTIAL" and "TRANSPORT" are defined in SavantGlobal.h file. They 

are published according to the result of the get_delay_mechanism() function. If the 

return value is "IIRJNERTIALJDELAY", then "INERTIAL" is published. If the return 

value is "IIR_TRANSPORT_DELAY", then 'TRANSPORT" is published. 

The delay of the signal assignment can be retrieved by calling the predefined IIR* 

get_timeO method of the IIR_WaveformElement class. The returned IIR pointer will 

point to the assignment time expression. If the pointer is not NULL, then its 

_publish_cc() method is called to publish the time expression. If the pointer is NULL, 

this means "delta" delay and the SavantGlobal.h defined "DELTA" string should be 

published. 

The IIRPvhdl_WaveformElement Class 

The IIR_WaveformElement has a predefined public method "IIR* get_value()". 

It returns an IIR pointer pointing to the value expression being assigned to the output 

signal. The IIRPvhdl_WaveformElement class is defined to overload the _publish_cc() of 

the IIRScram_WaveformElement class. There is simply one line in the new _publish_cc() 

function: get_value()->_publish_cc(). 

Whole Array Assignment 

It is valid in VHDL to assign the value of one array to another. For 
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example, if both a and b are two dimensional array objects, "a <= b" means to do one to 

one copy of the array element from b to a. In our project, array is not registered to the 

simulation kernel as single object but as a group of discrete elements, thus whole array 

assignment should be handled differently. Details on how to handle VHDL arrays will be 

discussed in later sections. 

Assignment of Record Field 

In contrast to array, record is registered to the simulation kernel as a single object. 

Thus when a field of the record object is assigned a new value, the delay should be 

assigned to the whole record object. To get the name of the record object, the predefined 

_get_prefix() method of IIR_SelectedName class is called. This method will return the 

pointer of the record object. To publish its name, 

we can simply call its _publish_cc() function. 

Variable Assignment Statement 

The IIRJVariableAssignmentStatement class updates the value of a variable with 

the value specified in an expression. It is a child class of the IIR_SequentialStatement class. 

Variable assignment statement may appear anywhere a sequential statement may appear. 

The IIR_VariableAssignmentStatement also has a predefined public target 

method, the "IIR* get_target()". It will return an IIR pointer to the target of the 

assignment. It defines another public method 

"IIR* get_expression()" to get the value of the assignment. To publish the assignment 

equation, the get_targetQ->_publish_ccO is called first, then an "=" is written out to 

"Classes.h", then get_expression()->_publish_ccO is called. 

Variable Name 
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When declaring variables, no prefix is added to their names. Now that the system- 

publishing prefix string is set, variable names will have the system prefix as well. This is not 

desired in this project. To overcome this problem, a IIRPvhdl_VariableDeclaration class is 

added. This class overloads the _publish_cc() of IIRScramJVariableDeclaration 

class. Actually the new function is almost the same as the old one, it only comments out 

the line IIRScram::_publish_cc_prefix_stringO, which publishes the system-publishing 

prefix. 

Expressions 

In signal assignment and variable assignment statements, expressions are most 

commonly used as the new value to be assigned. As mentioned above, the get_yalue() 

method of the IIR_WaveformElement class and the get_expression() of the 

IIR_VarkbleAssignmentStatement class will return an IIR pointer to the expression. To 

publish the expression, the _publish_cc() method of the IIR pointer is called. Most of the 

time, the IIR pointer returned will point to an IIR_DyadicOperator node or an 

IIR_MonadicOperator node. 

Dyadic operator is an operator with two operands, like "add". Monadic operator 

is operator with only one operand, like "not". 

The Dyadic Operator Classes 

The predefined IIR_DyadicOperator classes include logical, relational, shift, 

adding, multiplying and miscellaneous operators. Derivatives of this class represent both 

language predefined dyadic operators and subprograms defining overloading of these 

operators. 

The parent class of IIR_DyadicOperator is IIR_Expression, which has lots of 

predefined child classes, such as the IIR_NandOperator, the IIRJEqulityOperator class, 
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etc. Actually all operator classes with two operands are its child classes. 

The IIR_DyadicOperator class has two useful predefined methods, the "IIR* 

get_left_operandO" and the "IIR* get_right_operand()"- The first method returns an 

IIR pointer to the left operand, the second method returns an IIR pointer to the right 

operand. By calling the _publish_ccQ method, the two operands can be published easily. 

It is possible that either of the IIR pointers points to an IR_DyadicOperator node itself. 

This is the situation where the expression contains more than one dyadic operators. The 

expression tree is thus more than one level. The whole expression can be published 

recursively. 

The predefined "get_kindO" method can be used to determine the name of the 

operator. For example, if the return value is "IIR_EQULITY_OPERATOR", it means the 

current operator is an "equality" operator and we can publish the corresponding "==" 

operator in C++. Figure 4.2 is a code segment of the _publish_cc() method of the 

IIRPvhdl_DyadicOperator class. 

switch(get_kind()) 
case IIR_NAND_OPERATOR : 

_cc_out << "-("; 
get_left_operand()->_publish_cc(); 
_cc_out <<"&"; 
get_right_operand()->_publish_cc(); 
_cc_out << ")"; 
break; 

default:  // for and/or/not, both logical and bitwise 
_cc_out << "("; 
get_left_operand()->_publish_cc(); 
_cc_out << " "; 
_publish_cc_operator_name(); 
_cc_out << " "; 
get_right_operand()->_publish_cc(); 
_cc_out << ")"; 

Figure 4.2 Example on How   to Publish Expressions 
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Several operators, such as "and", "or", and "not", can be either logical operators 

or bitwise operators. To publish the correct operator, their type should be determined. To 

solve this problem, the IIRScram_DyadicOperator class defines a virtual function 'Void 

_publish_cc_operator_nameO"- All its child classes must override this class to print out 

the correct operator. For example, Figure 4.3 shows this function of the 

IIRPvhdl_AndOperator class. 

void 
IIRPvhdl_AndOperator: :_p\iblish_cc_operator_name ()   { 

if(get_subtype()->_is_bit_type()){ 
_cc_out  <<   "&"; 

}  else  { 
_cc_out  <<   "&&"; 

} 
} 

FIGURE 4.3 THE _PUBUSH_CC_OPERATOR_NAME() METHOD OF IIRPVHDL_ANDOPERATOR 

If the return value of get_subtvpeO->_is_bit_type() is true, it means the 

operation is a bitwise operation and the bitwise operator should be published. Otherwise, 

the logic operator should be published. The way to publish these operations is shown in 

the default section of Figure 4.2. Please refer to [34, IIRPvhdl_DyadicOperator.cc] for 

coding detail. 

The Monadic Operator Classes 

The predefined IIR_Monadic operators include identity, negation, absolute value 

and not. Derivatives of this class represent both language predefined monadic operators 

and subprograms defining overloading of these operators. 

The IIR_MonadicOperator class has a predefined function "IIR* get_operand" 

which returns an IIR pointer of the operand. The operand can be either a dyadic operator 
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or a monadic operator itself. To publish the operand, its "_publish_cc()" method is 

called. The IIRScram_MonadicOperator class also defined a virtual function 

"void _publish_cc_operator_name()"- This function also must be ovedoaded by its 

child class. Up to now, only the NOT monadic operator has been implemented. For 

coding details, please refer to [34, IIRPvhdl_MonadicOperator.cc]. 

The If Statement 

Like C++, VHDL has a "if..then..else" statement which evaluates a condition 

then executes different branches accordingly. The goal here is to translate the VHDL If 

statement into the C++ If statement. 

If statement usually contains a test condition, a "then" branch, a cluster of "elseif' 

branches, and a final "else" branch. AIRE defines the IIR_IfStatement class and the 

IIR_Elsif class to implement the If statement. Correspondingly, an IIRPvhdl_Ifstatement 

class and an IIRPvhdl_Elsif class have been implemented to perform the translation work. 

The IIRPVHDLJFSTATEMENT Class 

The AIRE predefined IIR_IStatement class provides for the optional, selective 

execution of one or more sequential statement lists. It is a child class of 

IIR_SequentialStatement and may appear anywhere sequential statements are allowed. 

The IIR_IfStatement uses a chain of IIR_Elsif tuples to contain the elsif parts of 

the If statement. The IIR_Elsif tuple combines a test condition and a sequence of 

statements, which are to be executed if the test condition is true. If the recursion does not 

encounter a "true", the final else sequence of statements (the else_sequence in 

IIR_IfStatement) is reached. 

The IIR_IStatement has the following predefined public data and method: 
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• IIR* get_conditionQ, which returns an IIR pointer to the boolean "condition" which 

is evaluated in order to determine which sequential statements are to be executed. 

• IIR_SequenttalStatementIist then_sequence is the "then" statement branch, 

which is to be executed when the condition is true. 

• IIR_Elsif* get_elsifO, which returns an IIR_Elsif pointer pointing to the "elsif' 

sequences. 

• IIR_SequentialStatementList else_sequence, which is the "else" statement branch. 

To publish the If statement, we only need to call the _publish_cc() method of 

the above public data or pointers returned by the public methods. Coding is rather 

straightforward. For details, please refer to [34, IIRPvhdl_IfStatement.cc]. 

The IIRPVHDL_ELSIF Class 

The predefined IIR_Elsif class represents one step within a recursive if-then-else 

statement. It is the "elsif branch, which may contain more than one "elsif statement 

sequences. 

The IIR_Elsif class has the following predefined public data and methods: 

• IIR* get_conditionO, which returns an IIR pointer pointing to the boolean 

expression to be evaluated. 

• IIR_SequentialStatementList then_sequence_of_statements, which is the 

sequence of statement to be executed when the condition is true. 

• IIR_Elsif* get_else_clauseO, which returns the next "elsif sequence if it exists. 

This makes the "elsif sequence a linked list. 

Similarly, the _publish_cc() method of the above data and returned pointers are 

called to publish the "elsif statement. Details of coding please refer to [34, 

49 



IIRPvhdl_Elsif.cc]. 

The Case Statement 

VHDL has a "Case" statement in which the behavior depends on the value of a 

single expression. Different evaluations of the expression will lead to the execution of 

different sequential statement sequences. This is similar to the "Switch" statement in C++. 

But the VHDL "Case" can not be converted to the C++ "Switch" statement directly. The 

reason is that in C++, the evaluation values of "Switch" can not be expressions, they can 

only be constants. Thus the VHDL "Case" statement is also translated into C++ 

"if..then..else" statement. 

The HRPVHDL.CASESTATEMENT Class 

The AIRE predefined IIR_CaseStatement provides for execution of at most one 

sequential statement list from a set of alternatives. It is a child class of the 

IIR_SequentialStatement class and may appear anywhere sequential statements are allowed. 

The IIR_CaseStatement class has a predefined "IIR* get_expression()" public 

method. The returned IIR pointer of this method points to an expression whose value is 

evaluated in order to select one choice and the implied sequence of statements to execute. 

The IIR_CaseStatement class has a predefined public data named 

case_statement_alternatives. It is of type IIR_CaseStatementAlternativeList. It is a list of 

the alternatives of the "Case" statement. 

The _publish_cc() function of IIRPvhdl_CaseStatement basically does 4 things: 

•     Save the returned IIR pointer of get_expressionQ to _current_publish_node. The 

_current_publish_node is an IIR* type global variable defined in IIRScram.hh. The 
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reason to save the pointer to this variable is to be able to publish the expression later 

when out of the IIR_CaseStatement node. 

• Publish "if(false) {}" as the "then" branch of the C++ If statement, so that all "Case" 

alternatives can be published as "elsif' branches. 

• Call the _publish_cc() method of the case_statement_alternatives to publish the 

"Case" alternatives. 

• Restore the old _current_publish_node value. 

For programming details please refer to [34, IIRPvhdl_CaseStatement.cc]. 

The HRPVHDL_CaseStatementAltetnativeByExpression Class 

The predefined IIR_CaseStatementAlternativeByExpression represents a case 

statement alternative in which the choice is a simple expression, discrete range (range type), 

or element simple name (the choice). It is a child class of the predefined 

IIR_CaseStatementAlternative class. 

The IIR_CaseStatementAlternativeByExpression has a predefined public method 

"IIR* get_choiceO" which returns an IIR pointer pointing to the choice expression of 

this alternative. 

The IIR_CaseStatementAlternative class has a predefined public data 

"IIR_SequentialStatementIist sequence_of_statements" which is inherited by the 

IIR_CaseStatementAlternativeByExpression class. This data element is basically a list of 

sequential statements which are to be executed when the "Case" expression is evaluated to 

match the choice expression of this alternative. 

The _publish_cc() method of IIRPvhdl_CaseStatementAlternativeByExpression 

publishes the "Case" alternative as a "elsif' branch of the If statement. It does the 

following things: 
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Publish the "else if string. 

Call _current_pub!ish_node->_publish_ccO to publish the expression. In the 

_publish_cc() method of IIRPvhdl_CaseStatement, the IIR pointer to the expression 

is stored in _current_publish_node. 

Publish the "==" string. 

Call get_choice()->_publish_ccO to publish the choice expression. 

Publish the ")". 

Call sequence_of_statements._publish_ccO to publish the sequential statement of 

this "Case" alternative. 

Please refer to [34, IIRPvhdl_CaseStatementAltemativeByExpression.cc] for coding 

details. 

The IIRPVHDL_CaseStatementAlternativeByOthers Class 

The predefined IIR_CaseStatementAlternativeByOthers represents a case 

statement alternative in which the choice implicidy denotes other elements of the case's 

composite subtype not previously explicit within an IIR_CaseStatementAlternativeList. It 

is similar to the "else" branch of the If statement or the "default" branch of the Switch 

statement 

in C++. 

The _publish_ccO method of IIRPvhdl_CaseStatementAlternativeByOthers simply calls 

_publish_cc() of sequence_of_statements to publish the code. Since 

IIR_CaseStatementAlternativeByOthers is a child class of IIR_CaseStatementAlternative 

class, it inherits this data element too. For coding details, please refer to [34, 

IIRPvhdl_CaseS tatementAlternativeByOthers.ee]. 
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The For Loop Statement 

VHDL has a For loop statement which resembles the C++ For loop statement. 

The predefined IIR_ForLoopStatement executes a sequences of statements zero or more 

times, advancing the value of an iterator constant once after each execution of the loop 

body. The IIR_ForLoopStatement class is the child class of IIR_SequentialStatement and 

may appear anywhere a sequential statement is allowed. 

The IIR_ForLoopStatement has the following predefined public data and method: 

• IIR_ConstantDeclaration* get_iteration_scheme(), which returns a pointer 

pointing to the iteration scheme. The iteration scheme, a constant declaration, is the 

For loop iterator. The declaration's subtype determines the iteration direction and 

range. 

• IIR_SequentialStatementList sequence_of_statements, which is the list of 

sequential statements within the For loop. 

The IIRPvhdl_ForLoopStatement class is defined to overload the _publish_cc() 

method of the IIRScram_ForLoopStatement class. To publish the For loop, the following 

functions are used: 

• get_iteration_schemeO->_is_ascending_range(), which is called to determine 

whether the iteration scheme is ascending. If this is true, its left bound is its lower 

bound. Otherwise, its right bound is its lower bound. The lower bound is assigned to 

C++ iteration variable. 

• get_iteration_schemeO->_publish_cc_leftO, which is called to publish the left 

bound of the iteration scheme. 

• get_iteration_scheme()->_publish_cc_rightO, which is called to publish the right 

bound of the iteration scheme. 
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The above functions are called to publish the head of the For loop. Inside the For 

loop, sequence_of_statements._publish_ccO is called to publish the sequential 

statements of the For loop. 

In VHDL, the iteration variable is meaningful only within the For loop. Its value can't 

be referenced outside the For loop. In SAVANT, an iteration variable is named by its 

memory address. As a result, different iteration variables have different names. In the 

published C++ class, each iteration variable is declared within the For loop. 

For coding details, please refer to [34, IIRPvhdl_ForLoopStatement.cc]. 

The While Loop Statement 

VHDL also has a While Loop statement which is similar to the While Loop 

statement in C++. The predefined IIR_WhileLoopStatement executes a sequential 

statement list zero or more times. A boolean condition is evaluated before each iteration. If 

the condition evaluates true, the enclosed statement sequence is executed. Otherwise, the 

statement following the While loop statement is executed. The IIR_WhileLoopStatement 

is a child class of IIR_SequentialStatement class and may appear anywhere a sequential 

statement is allowed. 

The IIR_WhileLoopStatement has the following predefined public data and method: 

• IIR* get_while_conditionO, which returns an IIR pointer pointing to the loop 

condition. The While condition is evaluated at the beginning of each iteration through 

the loop statement's body. When the While condition evaluates False, the loop 

execution terminates. 

• IIR_SequentialStatementList sequence_of_statements, which is the list of 

sequential statements that will be executed when the condition is true. 

To publish the While Loop, we simply need to call the _publish_cc() 
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function of the above data and the IIR pointer is returned by the method. Coding is 

straightforward. For coding details please refer to [34, IIRPvhdl_WhileLoopStatement.cc]. 

The Wait Statement 

VHDL has a Wait statement, which does not have a corresponding language 

construct in C++. A VHDL process (with no sensitivity list) executes from the beginning 

of the process to the first occurrence of a Wait statement, then suspends until the 

condition specified in the Wait statement is satisfied. If the process only includes a single 

Wait statement, the process reactivates when the condition is satisfied and continues to the 

"end process" statement, then begins executing again from the beginning. If there are 

multiple Wait statements in the process, the process executes only until the next Wait 

statement is encountered [1, page 168-169]. 

Syntax 

Wait statement is a sequential statement with the syntax rule shown in Figure 4.4. 

wait_statement <= 
[label:]   wait   [on signal_name   {,...}] 

[until boolean_expression] 
[for  time_expression] 

FIGURE 4.4 SYNTAX OF WAIT STATEMENT 

The sensitivity clause, condition clause, and timeout clause specify when the process is 

subsequendy to resume execution. They can be combined together to use in the VHDL 

process. 

Starting with the word on, the sensitivity clause specifies a list of signals to which 

the process responds. If the Wait statement contains only a sensitivity list, the process will 
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resume whenever any one of the listed signals has an event. The condition clause starts 

with the word until. It specifies a condition that must be true for the process to resume. 

The timeout clause starts with the word for. It specifies a maximum interval of simulation 

time for which the process should be suspended [1, page 114-116]. 

The IIR.WAITSTATEMENT Class 

The IIR_WaitStatement suspends execution pending a signal event, boolean 

condition and/or time out interval. It is a child class of the IIR_SequentialStatement class 

and may appear almost anywhere a sequential statement may appear (some restrictions in 

subprograms). It has the following predefined public data and methods: 

• IIR_SignalNameList sensitivity_list, which is the sensitivity list. 

• IIR* get_condition_clauseO, which returns an IIR pointer to the condition clause. 

If no condition clause is associated with the Wait statement, the pointer to condition 

clause returns NIL. 

• IIR* get_timeout_clauseO, which returns an IIR pointer to the timeout clause. A 

NIL value for the clause denotes timeout at STD.STANDARD.TIME'HIGH. 

The IIRPvhdl_WaitStatement class overloads the _publish_cc() method of the 

IIRScram_WaitStatement class. The three Wait clauses all have been implemented. 

The EXECUTEPROCESSO Function 

Before discussing details on how to implement the three Wait clauses, it is 

necessary to go back to the structure of the executeProcess() method of the simulation 

object class. 

The way the executeProcess() implements the suspension semantics of the Wait 

statement is simple. It uses a If statement to test the Wait conditions (a condition 
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expression or event of sensitivity list signals). If the test returns true, then execution of the 

function goes to the next statement. Otherwise, the function simply returns. 

The semantics of a Wait statement requires that a VHDL process resume from the 

last suspended Wait statement, not the beginning of the process. In C++, each time an 

executeProcessO function is resumed, it is always resumed from the beginning. Thus it 

requires a jump from the beginning of the function to the Wait statement where the 

function was last suspended. 

To solve this problem, two things have to be done. First, each Wait statement has 

to be labeled so that a jump can reach it direcdy. Second, a record has to be kept when the 

executeProcessO is suspended. The next time the function is resumed, the record will tell 

the function where to jump to. A local static integer "P" is defined to serve this purpose. 

Its initial value is "0". Each time a Wait statement is reached, VT" increases by "1". The 

first Wait statement is labeled "BLOCK1", the second is labeled "BLOCK2", and so forth. 

A switch statement is published at the beginning of each executeProcessO function using 

the value of "P" as the branching factor. Thus when a executeProcessO is suspended, 

"P" keeps the sequence number of that Wait statement. Since "P" is a static variable, its 

value is not lost when the function returns. When the function is resumed next, the switch 

statement will jump to the Wait label according to the sequence number kept by "P". This 

is how things work. 

Another issue is how each Wait statement could know its sequence number in the 

process. Wait statement will be published in the IIR_WaitStatement node, not the 

IIRJProcessStatement node. Thus each IIR_WaitStatement node should already know its 

sequence number in the VHDL process when it is published. This problem is solved by 

SAVANT. The IIRScram_WaitStatement class has defined a public data IIR_Iat32 

wait_id. This integer is used to keep the Wait sequence number. Remember in the 

_publish_ccO method of IIRPvhdl_ProcessStatement, the Wait list is built before any 

publishing work. It is during this building of the Wait list that each 
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IIRScram_WaitStatement node is assigned a wait_id. For details please refer to [34, 

IIRPvhdl_ProcessStatement.cc]. 

The Wait on Sensitivity List Clause 

The BasicObject dass defines a function bool hasEvent(*) to test if a signal has 

an event on it. To implement the sensitivity list semantics, this function is called upon each 

signal in the sensitivity list of the Wait sensitivity clause. If all hasEvent() functions return 

false, this means no event at all and the executeProcessO function should return. 

Otherwise, the function should start executing the following statement. The names of 

signals in the sensitivity list can be easily retrieved from the predefined sensitivity_list 

data element. 

The Wait Until Condition Clause 

The Wait condition clause is easy to handle. The get_condition_clause() will 

return the IIR pointer to the condition clause. The condition is published as the test 

expression in an C++ If statement. If the condition is false, the executeProcessO 

function should return. Otherwise, the function should proceed from the next statement. 

The Wait for Timeout Clause 

As mentioned earlier, each C++ class has defined two signals exclusively to handle 

the Wait For clause, the in_wait_for_signal and the out_wait_for_signa! of type 

SavantbitType. The first signal is registered as an input signal, the second is registered as 

an output signal. These two signals are connected directly when generating the 

interconnection information. 

The time out clause is actually handled as a signal assignment statement with transport 

delay. The delay time equals the timeout value. For example, if the third Wait statement in 
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a VHDL process is "wait for 3 ns", then the published C++ code is shown in Figure 4.5. 

P++; 
BLOCK3: 
out_wait_for_signal  =   !   in_wait_for_signal; 
assignDelay(&out_wait_for_signal,3 NS#   TRANSPORT); 
if(!hasEvent(&in_wait_for_signal))   return; 

FIGURE 4.5 EXAMPLE OF WAIT FOR TIMEOUT CLAUSE 

Thus the Wait For timeout clause is basically translated into the Wait On 

sensitivity clause. 

Combination of Clauses 

All the Wait clauses are implemented using the C++ If statement. The 

combination of Wait clauses is only a matter of publishing which If statement first. Since 

the Wait For clause is transformed into the Wait On sensitivity clause, the problem is 

simplified to publishing the combination of sensitivity and condition clauses. 

If a Wait statement includes a sensitivity clause as well as a condition clause, the 

condition is only tested when an event occurs on any of the signals in the sensitivity clause 

[1, page 116]. This means the sensitivity clause has higher priority than the condition 

clause. The If condition generated by the sensitivity clause should be tested first. If there is 

an event on the sensitivity list, then the If condition generated by the Wait condition clause 

should be tested. For coding details, please refer to [34, IIRPvhdl_WaitStatement.cc]. 

Process with Sensitivity List 

SAVANT transforms a process with a sensitivity list into a process with a Wait 

statement, which uses the same sensitivity list. This Wait statement is put as the last 

statement in the VHDL process. Thus there is no need to spend extra effort on 

this issue. To test this, simple type "scram -publish-vhdl test.vhd" 
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to see the VHDL code generated by SAVANT (test.vhd is the testing VHDL 

file containing a process with sensitivity list statement). 

Appendix E shows the code of the IIRPvhdl_WaitStatement.hh and appendix F shows the 

IIRPvhdl_WaitStatement.cc file. 

Constant Declaration 

In VHDL, constants can be declared anywhere declarations can appear. Due to 

limited time, the declarations of constants are restricted only to package declaration in this 

project. It is also possible to implement the declaration of constant in other declaration 

bodies. 

Since C++ also allows constant declarations, the translation of VHDL constant 

declaration into C++ constant declaration is straightforward. After being declared, 

constants can be used just like signals and variables. 

VHDL Constant Declaration <= 
constant identifier{,...}: subtype_indication 
[:=expression]; 

C++ Constant Declaration <= 
const type identifier = expression; 

FIGURE 4.6 CONSTANT DECLARATION SYNTAX 

The syntax of VHDL constant declaration and the C++ constant declaration 

syntax is shown in Figure 4.6. 

The IIR_PACKAGEDECLARATION Class 

Package declarations are usually at the beginning of VHDL source code, thus 
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packages will be published first by the SAVANT publisher. As a result, declarations in the 

package will be published at the beginning part of the "Qasses.h" file. Since all C++ 

classes are published to "Qasses.h", these constants will become global constants. They 

can be accessed by any classes in the Qasses.h file. 

The predefined IIR_PackageDeclaration class represents collections of 

declarations, which are elaborated at most once, as a collection. This class has a predefined 

public data element {IIRJDeclarationList package_declarative_part}. It is a list of 

declarations appearing in the package. 

When processing the package declaration, the IIRScram_PackageDeclaration calls the 

_publish_ccO method to publish the C++ code. The _publish_cc() method in turn calls 

the locally defined _publish_cc_header() function. This function then calls the 

_publish_cc_package_declarationsO method of the package_declarative_part, which 

is of type IIR_DeclarationList. This sequence is correct thus there is no need to change it. 

There is no IIRPvhdl layer class, namely IIRPvhdl_PackageDeclaration, added to shadow 

the _publish_ccO method of the IIRScram_PackageDeclaration class. 

The IIRPVHDL_DECLARATIONLIST Class 

The purpose to add the IIRPvhdl_DeclarationList class is simply to overload the 

_publish_cc_package_declarationO function declared by the IIRScram_DeclarationList 

class. The new function is basically a copy of the old function, only with the changes 

shown in Figure 4.7. 

case IIR_CONSTANT_DECLARATION: 
_cc_out.set_file("Classes.h"); 
_cc_out « "const "; 
decl->_get_subtype()->_publish_cc(); 
_cc_out « " "; 
decl->_publish_cc(); 
_cc_out « " = "; 
decl->get_value()->_publish_cc(); 
_cc_out « ";\n" « endl; 
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break; 

FIGURE 4.7 CODE OF CONSTANT DECLARATION 

Coding is quite straightforward. For details, please refer to [34, 

HRP vhdl_DeclarationList.cc]. 

Enumeration Types 

Like C++, VHDL also supports enumeration types. Thus the translation from the 

VHDL enumeration type declaration to C++ enumeration type is straightforward. 

Enumeration types can be declared anywhere, but in this project, only enumeration types 

declared in a package are implemented. 

When processing a package declaration, the IIRScram_PackageDeclaration calls 

the _publish_ccO method to publish the C++ code. The _publish_cc() method in turn 

calls the locally defined _publish_cc_header() function. This function then calls the 

_publish_cc_package_declarationsO method of the package_declarative_part, which 

is of type IIR_DeclarationList. A IIRPvhdl_DeclarationList class has been added to 

overload the function. For enumeration declaration types, the "get_kind()" method will 

return "IIR_TYPE_DECLARATION". The "_publish_cc_decl()" method is then called 

to publish the declarations (for coding details please refer to [34, 

IIRPvhdl_DeclarationList.cc]. 

The void _publish_cc_decl() function is defined at IIRScram.hh as a virtual 

function. An IIRPvhdl_TypeDeclaration class is defined to overload this function. There is 

only one line in the new function, "get_typeO->_publish_cc_decIO". 

The get_type() method is a predefined public method of the 

IIR_TypeDeclaration class. It returns an IIR_TypeDefinition pointer to the new type 

definition node. In the context of enumeration type declaration, the returning pointer will 
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be an IIR_EnumerationTypeDefinition pointer. 

An IIRPvhcHJEnumerationTypeDefinition class is defined to overload the 

_publish_cc_decl() method. In the AIRE standard, the predefined 

IIR_EnumerationTypeDefinition represents its value domain by a set of enumeration 

literals. It has a predefined public data IIR_EnumerationIiteralList 

enumeration_literals, which is the list of enumeration literals associated with the type 

definition. 

The _publish_cc_declO function of IIRPvhdl_EnumerationTypeDefinition does the 

following things: 

• Set the output file name to "Classes.h". 

• Call _publish_cc_tvpe_name() to publish the name of the new type. 

• Use a for loop to go through enumerationjiterals and publish each enumeration 

literal in the list. 

After an enumeration type has been declared, there is no difference in using a 

variable of this enumeration type and variables of other types. Thus declaration is the only 

thing needed to be considered for enumeration types. For programming details, please 

refer to [34, IIRPvhdl_TypeDeclaration.cc, IIRPvhdl_EnumerationTypeDefinition.cc]. 

Array Types 

VHDL supports array types. Unlike C++, array types have to be defined first. This 

new type can then be used to declare array objects. This section discusses issues on how to 

publish VHDL arrays into C++ arrays. 
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The IIRPVHDLJNDEXEDNAME Class 

The predefined IIRJndexedName denotes a single element of an array. It has a 

predefined public method IIR* get_suffix() which returns an IIR pointer to the name's 

suffix (an expression which evaluates to a single integer). 

The IIRPvhdlJndexedName Class is defined to handle array entry related 

problems. This class has overloaded or defined the following functions: 

• void _get_signal_source_info(set<IIR_Declaration> *siginfo) This function is 

defined at IIRScram.hh as a virtual function. The purpose of this function is to put the 

current array entry into the output signal list siginfo. In SAVANT, the whole array will 

be put into the output signal list, not the single element. Thus this function is 

overloaded to put the array entry to the list. 

• void _get_list_of_input_signals(set<IIR_Declaration>* list) This function is also 

defined in IIRScram.hh as a virtual function. Its purpose is to put the current array 

entry into the input signal list denoted by list. In SAVANT, the whole array is put into 

the input signal list, not the single entry. Thus this function is overloaded to put the 

array entry into the list. 

• void _publish_cc() This function is overloaded to publish the whole name of the 

array entry. It will use the two variables _proc_in_sig_list and _proc_out_sig_list 

defined by IIRPvhdl.hh to determine whether the current array entry is an output 

signal or an input signal, then put prefix "in_" or "out_" accordingly. 

• void _publish_cc_array_entry_locationO This function is defined to publish the 

suffix of the array entry using the underscore format. For example, array entry (1,2) 

will be published as _1_2. This function is to handle the naming of an array entry 

where the whole array is not in either the input or the output signal list. Thus this entry 

is declared as a separate signal and its name will use the underscore format. This 

function uses the get_suffix() to get the IIR pointer to the suffix expression. 
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Please refer to [34, IIRPvhdl_IndexedName.cc] for programming details. 

Template Array Classes 

VHDL supports direct array operations. That is, array objects can be assigned, 

added, or multiplied as simple type objects. The result is that each array entry element will 

perform the operation. This feature is not supported in C++ directly. To implement this 

feature, VHDL array types have to be declared as C++ classes. These array classes must 

use operator overloading to implement the whole array operations. 

Template array classes have been developed to solve this problem. Right now, 

template array classes have been developed for one, two, and three dimensional array 

types. The reason to use templates is that all array classes are almost identical except for the 

data types of their entries. Thus there is no need to generate a separate class for each array 

type. Figure 4.8 shows how the assignment operator is overloaded by the one dimensional 

template array class. For now, the following operators have been overloaded: +,- 

,*,/,==,!=,\&> I AA
J
=

- The "=(int)" operation is overloaded for each array class to ensure 

the initialization of the class object using a single integer value. The code of template array 

classes implemented in file "PvhdlArray.h". Appendix G shows the portion of one 

dimensional array template class. 

// overload = 
PvhdllDArray<Dtype>& operator=(PvhdllDArray<Dtype> &obj) 
{ 

for( int i=0; i<size; i++) 
array[i]   =  obj.array[i]; 
return  *this; 

} 

FIGURE 4.8 OVERLOADING ASSIGNMENT OPERATOR FOR ONE DIMENSIONAL 
ARRAY CLASS 

65 



Right now, SAVANT only supports the direct array assignment operation. Other 

array operations are not supported. There is a compiling error if the source VHDL code 

contains other array operations. These array operations are overloaded for future versions 

of SAVANT, which is supposed to support them. 

The IIRPVHDL_ArraySubtypeDefinition Class 

The IIRPvhdl_ArraySubtypeDefintion class is added to handle the declaration of 

array types. Since array classes are implemented as template classes, it is necessary to know 

two things about the VHDL array type: its dimension and the data type of its entry. The 

void _publish_cc0 function is overloaded to publish array types using the array template 

classes described above. 

To get the dimension of the array type, the IIR_Int32 _get_num_indexes() 

function is called. This function is defined by the IIRScram_ArrayTypeDefinition class, 

which is the parent class of IIRScram_ArraySubtypeDefinition class. If the return value is 

"1", then the 'TvhdllDarray" template class is used; if the return value is "2", the 

'Tvhdl2Darray" template class is used; if the return value is "3", the 'TvhdBDarray" 

template class is used. No higher dimension array types are supported right now. 

To get the data type of the array entry, a for loop is used to call the 

_get_element_subtvpeO function as many times as the dimension. The final subtype will 

be the type of the entry element. By calling its _publish_cc_type_name() function, the 

array entry data type can be published. To see how this is done, please refer to [34, 

IIRPvhdl_ArraySubtypeDefinition.cc]. 

Record Types 

VHDL also supports record types. VHDL record types are translated into C++ 

record types in a straightforward way. 
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The IIRPVHDL_RecordTypeDefinition Class 

The predefined IIR_RecordTypeDefinition class represents a record type having 

zero or more element declarations. It has a predefined public data element 

element_declarations of type "IIR_ElementDeclarationList". This is the list of all die 

fields of this record. 

The IIRPvhdl_RecordTypeDefinition class is defined to overload the 

_publish_cc_declO function. In this function, element_declarations is used several 

times. By going through this list, each of the record elements is published by its type and 

name. Also, some operators are overloaded for the record, such as addition, etc. The 

reason is to support arrays of record. Since the template array classes have overloaded 

some operators, each defined record type has to overload the same operators. For coding 

details, please refer to [34, IIRPvhdl_RecordTypeDefinition.cc]. 

4.3 Future Work 

To handle more complicated VHDL descriptions, more VHDL constructs need to be 

supported in the future, such as functions and procedures, bus resolution, generic constant, 

etc. On the other hand, as time goes by, SAVANT will be improved and it can be used to 

serve this project better. 
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5. ELABORATION AND 

INTERCONNECTION OBJECTS 

5.1 INTRODUCTION 

In this chapter we will present the representation scheme that we've used to encode the 

interconnection of the networked objects of any VHDL design, or any system in general. 

In the first section, we spend some time over this subject and the need for extracting this 

encoded form of interconnection, and also some conventions that we use. In section two, 

we present the algorithm that we developed for this purpose along with a simple example 

to clarify the algorithm. 

Any system subject to simulation, consists of objects that are interconnected. If MPI 

(Message Passing Interface) is used to model the system, then objects communicate with 

each other by sending and receiving messages. Communication, or message passing, is 

done through the network in which objects are interconnected. In other words, each object 

could send/receive messages to/from objects that it is direcdy connected to in that 

network configuration. Hence, each object should have information about the source of 

the incoming messages, and also the destination of the out going messages. This implies 

that we need a representation scheme to present objects in some encoded fashion, so that 

each object could be uniquely identified in the network. One way would be to assign 

unique object IDs to each object, then each object will be uniquely identified in that 

network. Doing this, we have solved just part of the problem. Usually objects are 

connected to several other objects via separate links/channels/ports and behavior of the 

object may depend on the events it receives from certain channels. For example in logic 

gate level simulation, an AND gate may be modeled as an object with two input ports 

68 



which receive events) and one output port (which sends events). Similarly, any object may 

be modeled as a multiple port object, some of them to receive messages and some of them 

to send messages. We call the former input port and the latter output port This shows 

that object IDs on their own are not complete for a representation scheme, since they do 

not give any information about the ports of the object, where other objects might be 

associated with. One solution would be, again to assign port IDs for each input and output 

ports and also tag them with input label or output label (to differentiate whether it is an 

input or output port). To examine this representation scheme, lets apply it to a very simple 

network as follows. In the Figure 5.1, the interconnection of objects is presented using a 

directed graph and in the Figure 5.2, we have used the proposed representation scheme to 

encode the network. 

Object name: A 
Object ID:      0 
Number of input 
ports: 1 

Number of output 
ports: 1 

Output port 0 is 
connected to : 
Input port 0 of object 
ID1 (B) 

B  ► c 
^ 

Figure 5.1 Interconnection Objects 

Object name: B 
Object ID:      1 
Number of input 
ports: 2 

Number of output 
ports :1 

Output port 0 is 
connected to : 
Input port 0 of object 
ID2(Q 

Object name: C 
Object ID:      2 
Number of input 
ports: 1 

Number of output 
ports :2 

Output port 0 is 
connected to : 
Input port 0 of object 
ID 0 (A) 

Output port 1 is 
connected to : 
Input port 1 of object 
ID 1(B) 

Figure 5.2 The Encoding of the Network 
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For this network, the proposed representation scheme covers the whole 

interconnection information that might be necessary in order to handle communication. 

Note that we do not need any convention about how we assign object IDs to the objects 

of the network. As long as we assign unique IDs in any arbitrary order to the objects, that 

works fine and the same statement is true about the port IDs. This is the basic 

representation that we use as part of our representation scheme for the VHDL systems. 

5.2 OBJECTS IN VHDL 

In this section we will focus on the systems that are modeled by VHDL. We develop our 

basic representation scheme that we started in section 5.1. However, before getting into all 

the details, we briefly talk about the tools that we used to extract interconnection 

information from a VHDL design. In order to visualize and facilitate understanding of our 

representation scheme and also our algorithm, we will set some conventions on showing 

objects in the system. 

VHDL and SAVANT 

VHDL is a language to model hardware, or in general any concurrent networked system 

and is used widely to model and simulate different hardware for design and production 

purposes. Our main goal for this project as stated earlier, is to establish a front-end 

interface between VHDL designs and our simulation kernel. Front-end interface consists 

of two main parts: 

Functional modeling of the VHDL objects into C++ classes. In this part of the front-end 

interface, VHDL objects are translated into C++, so that later we can plug them into our 

simulation kernel. Extracting the interconnection information to handle the 

communication of those objects is also necessary. 
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The focus of this section is on the second part. However for both cases, we need a tool to 

facilitate this process to apply on VHDL source code. We have chosen SAVANT as a tool 

for this purpose. 

The main section of any VHDL design is defined in its architecture statement part, where 

all the signal assignments and component instantiation are specified. SAVANT 

automatically converts each signal assignment into a process statement containing that 

signal assignment and a wait statement on that signal. Any other VHDL architecture 

statement construction could be either a signal assignment, process statement, component 

instantiation or generate for statement, which in turn is used either as component 

instantiation or signal assignment generator. Based on the statement we made a few lines 

before, each signal assignment is converted to a process statement, and each component 

instantiation recursively has an architecture statement part, which again may include 

another layer of component instantiation, signal assignment, etc. Therefore we will see 

that the bottom line objects of any VHDL design are just processes. In other words 

processes are the basic objects which can not be further split up into more basic objects. 

We use this concept of object during the whole section. Now, lets spend some time on our 

convention of displaying objects. Lets start with a very simple VHDL code. 

 'M 
ENTITY NOT_GATE is 

PORT(I0 : IN BIT; NO : OUT BIT); 
END NOT; 

ARCHITECTURE behavioral of NOT.GATE is 
BEGIN 
pl:PROCESS(I0) 
BEGIN 

NO <= NOT 10; 
END PROCESS; 

END behavioral; 

This VHDL code models a not gate. If you notice the input port and output port 

characteristics are specified in the PORTQ section of the design, which means this module 

communicates with other modules through these ports. On the right, we used a figure to 
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show the data functional model of this design. Each VHDL design is displayed by a box 

labeled with the entity name. We also display the input and output ports. If it contains 

multiple basic objects (several concurrent signal assignment or component instantiation), 

we also show them. The simple blank box is just used for the basic objects (processes). In 

the similar way, we can display an and gate, which only contains one process statement: 

ENTITY AND_GATE is 
PORT(I0, II: IN BIT; AO : OUT BIT); 

END AND_GATE; 

ARCHITECTURE behavioral of AND_GATE is 
BEGIN 
pl:PROCESS(I0,Il) 
BEGIN 
A0<=I0ANDI1; 

END PROCESS; 
END behavioral; 

Now assume the following code where this not gate is instantiated in another VHDL 

design (buffer): 

ENTITY BUFFER_GATE is 
PORT(I0 : IN BIT; BO : OUT BIT); 

END BUFFER_GATE; 

ARCHITECTURE structural of BUFFER_GATE is 
COMPONENT NOT_GATE 
PORT(I0 : IN BIT; NO : OUT BIT); 

END COMPONENT; 

FOR notO, notl: NOT_GATE USE ENTITY WORK.NOT_GATE(behavioraI) 
PORT MAP (10, NO); 

SIGNAL inter: BIT='0'; 

BEGIN 

notO: NOT_GATE PORT MAP(I0=>IN0, N0=>inter); 
notl: NOT_GATE PORT MAP(I0=>inter, N0=>B0); 

END structural; 
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Since this buffer uses two instances of the not gate, it is not a basic object and therefore we 

also display the components that it contains. If you notice we have also included the 

intermediate signal to show how these two components are connected. The buffer might 

be instantiated in other VHDL designs, as in the Delayed_AND: 

ENTITY Delayed_AND is 
PORT(X0, XI: IN BIT; YO : OUT BIT); 

END DeIayed_AND; 

ARCHITECTURE structural of DeIayed_AND is 

COMPONENT AND_GATE 
PORT(I0, II : IN BIT; AO : OUT BIT); 

END COMPONENT; 

COMPONENT BUFFER_GATE 
PORT(IN0 : IN BIT; BO : OUT BIT); 

END COMPONENT; 

FOR andO: AND_GATE USE ENTITY WORK.AND_GATE(behavioral) 
PORT MAP (10,11,A0); 

FOR bufO, bufl: BUF_GATE USE ENTITY WORK.BUFFER_GATE(behavioraI) 
PORT MAP (INO, BO); 

SIGNAL interO, interl: BIT:='0'; 

BEGIN 

bufO: BUFFER_GATE PORT MAP(IN0=>X0, B0=>inter0); 
bufl: BUFFER_GATE PORT MAP(IN0=>X1, B0=>interl); 
andO: AND_GATE PORT MAP(IO=>interO, Il=>interl, A0=>Y0); 

END structural; 
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Top most design unit 

Level one of components instantiation 

Level two of components instantiation 

Intermediate signal 

Figure 5.3. Delayed And Architecture 
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If you notice, this notation captures the way all the basic objects are connected, without 

concerning their functional behavior, and this is what we are exactly looking for, to extract 

the interconnection information. The reason we introduce this notation is to give a better 

understanding of the algorithm we have used. In addition to this notation, we also use a 

tree graph to show the general interconnection of the objects as follows: 

This figure simply shows that the top most design is Delayed_AND which includes three 

components: two instances of buffer and one instance of and. Each buffer component 

includes two instances of not. We can go further down the tree, since all of the leaves of 

the tree are basic objects. As you notice, it is good to think of any VHDL design as a tree, 

where the leaves of the tree are the basic objects. This figure also tells us that in order to 

find the interconnection information among the basic objects, we need to traverse the tree 

down to the leaves to obtain such information. 

5.3 ALGORITHM OVERVIEW 

The algorithm can be stated in three steps: 

1. Identify the basic objects (processes) and assign globally unique Ids to each. 

2. For each basic object, assign locally unique port Ids to each input and output port and 

also intermediate signals. 

3. For each basic object, find the destinations of its output ports in terms of couples 

(global ID, port ID). 
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This is a very general form of the algorithm and we at this point keep it in this way to help 

understanding. Later we will explain the detailed algorithm in more depth. Now we show 

how the algorithm works and we explain it based on the VHDL design Delayed_AND. 

SAVANT keeps the information about any VHDL design, similar to the tree graph that we 

pointed out earlier. In SAVANT we can start with the top most design as the root of that 

design, and by traversing the tree, we can reach to any node of the tree. If you look at the 

Delayed_AND design, signal XO is mapped to INO of bufO, and inside the buffer VHDL 

code, INO is mapped to the 10 of notO. We can simply write down this mapping 

information for all of the signals manually: 

XO O INO (of bufO) <* 10 (of notO of bufO) 
XI O INO (of bufl) O 10 (of notO of bufl) 

inter (of bufO) <S> NO (of notO of bufO) O 10 (of notl 
Of bufO) 
inter (of bufl) O NO (of notO of bufl) O 10 (of notl 
Of bufl) 

interO  O NO (of notl of bufO) <S> 10 (of andO) 
interl  O NO (of notl of bufl) <S> II (of andO) 

A0 (of andO) O Y0 

Unfortunately, SAVANT does not support a data structure that gives you the list of the 

signals that are linked to any particular signal. In other words, there is no data structure in 

SAVANT, such that you submit a query for a signal, for example X0 and it returns a list of 

signals (like INO, 10) that are connected to this signal. This implies that we have to traverse 

the tree of the design rooted at the top most design and extract such information. We 

need to encode this information, in terms of numbers, so that the simulator can efficiently 

use them. To see how this works, lets apply the first two steps of the proposed algorithm 

to the Delayed_AND design: 
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Object 
name 

Object 
ID 

Number 
of 
output 
ports 

Port ID and 
port type of 
this 
Output 

Number 
of 
input 
ports 

Port ID 
of the 
first 
input 

Port ID 
of the 
second 
input 

NotO 
(of bufO) 

0 1 (0,output) 
(NO) 

1 (0,input) 
(10) - 

Notl 
(of bufO) 

1 1 (0,output) 
(NO) 

1 (0, input) 
(10) - 

NotO 
(of bufl) 

2 1 (0,output) 
(NO) 

1 (0, input) 
(10) - 

Notl 
(of bufl) 

3 1 (0,output) 
(NO) 

1 (0, input) 
(10) - 

AndO 4 1 (0,output) 
(A0) 

2 (0, input) 
(10) 

(1, input) 
(ID 

So far we have assigned unique object IDs to each object and also we have assigned locally 

unique port IDs to each port of the object. Lets now summarize our ID assignment ruling 

system: 

1. Each basic object is assigned to a globally unique ID and the order of assigning IDs is 

arbitrary. For example if there are N basic objects in the system, we assign Ids 0 to N-l 

to these N objects. We can assign them in any arbitrary order. In our example, there 

are five basic objects and we have assigned them IDs 0 to 4. 

2. For each object, we assign locally unique port IDs to each of input and output ports. 

For example if a basic object has m inputs and n outputs, we assign IDs 0 to m-1 to 

the inputs and IDs 0 to n-l to the outputs. In our example, if we pick andO, it has 2 

inputs and one output. Therefore we assign 0 and 1 to the inputs and 0 to the output. 

3. In addition to port IDs, we also need labels to show whether this port is input or 

output, otherwise we will not be able to distinguish input or output ports, based on the 

port IDs (since port IDs for both input and output start from 0). 

4. We claim that with this information, each object can be uniquely identified and 

moreover, each port of each object is also uniquely identified. For example, object 

notO of bufO, can be represented as (objectID:00) or output port of the notl of bufl 

can be represented as (objectID:3, portID:0, port_type:output). Or for example the 

encoded form (2,0,input), tells us about input port with port ID 0 of basic object 2, 
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which is 10 of notO of bufO. 

So far, we have applied the first and second steps of the algorithm. The most difficult part 

of the algorithm is the third part which is to obtain a destination list for each output port 

of all basic objects. We are interested in extracting information as specified in Figure 5.3 to 

find out how inputs and outputs of the basic objects are connected to each other. 

Connectivity, is symmetric and transitive, which means "if a is connected to b" then: 

• "b is connected to a" 

• and if "b is connected to c", then " a is also connected to c" 

The transitivity rule, plays a very important role in extracting interconnection information. 

For example, consider notO and notl of bufO. There is no explicit information in 

SAVANT that tells us buf0:not0:N0 is connected to buf0:notl:I0, but if we extract some 

information as specified in Figure 5.3, then we can use transitivity property and conclude 

this: 

NO (of notO of bufO) O inter (of bufO) O 10 (of notl 
Of bufO) 
Implies that 
NO (of notO of bufO) <» 10 (of notl Of bufO) 

This procedure is called Elaboration, in which by applying the transitivity rule in several 

steps we obtain new connectivity information. Step 3 of the algorithm is the application of 

Figure 5.4. Decomposition Hierarchy 

elaboration on the design tree to extract all       the interconnection information. Before we 
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get into the details of our elaboration procedure, lets overview our approach. In Figure 5.4, 

we displayed the tree representation of our example. As we explained earlier, each leaf of 

this tree represents one basic object. As shown in Figure 5.4, each leaf or basic object, 

using the transitivity rule, reports to the parent node the connectivity information (which 

means that each of the basic object input/output ports are connected to which signal in 

the parent node). After the parent node receives all reports, it does the same procedure and 

reports the newest elaborated information to its parent node. This process continues till all 

the information is collected at the root, which is the top most design. 

Lets see how this works for our example. For example, consider notO of bufO. First notO 

reports to bufO that I0OIN0 and NO <£> inter. Then after bufO collects the same 

information from notl (which is IOOinter and N0OB0), it reports to Delayed_AND that 

I0OX0 and BOOinterO. 

Delayed_AND, after receiving this information and the same kind of information from 

bufl and andO, can then simply combine and elaborate this information and form the final 

interconnection information. 

• Phase 1 
notO reports to bufO : 
bufO:notO:IO O bufO:INO 
bufO:notO:NO O bufO:inter 

notl reports to bufO : 
bufO:not1:10 O bufO:inter 
buf0:notl:N0 «► buf0:B0 

notO reports 
bufl:not0:I0 

to bufl 
O bufl: INO 

BUFFER 

/\ 
NOT        NOT 

BUFFER 

NOT NOT 

bufl:not0:NO O bufl:inter 

notl reports to bufl : 
bufl:notl:10 <» bufl:inter 
bufl:notl:NO O bufl:BO 

•    Phase 2 
bufO  reports to Delayed_AND 
buf 0 :not0 : !0ODelayed_AND:X0 

AND 

79 



bufO:notO:NO <=> bufO: inter 
bufO:notl:IO O bufO:inter 
bufO.-notl :N0 <=t> Delayed_AND: interO 

bufl reports to Delayed_AND : 
bufl:notO:IO O Delayed_AND:Xl 
bufl:notO:NO O bufl:inter 
bufl:notl:IO <£> bufl:inter 
bufl:notl:NO <£>  Delayed_AND: inter 1 

andO reports to Delayed_AND : 
andO:IO «■ Delayed_AND:inter0 
andO:I1 C" Delayed_AND:inter1 
andO:AO <» Delayed_AND:YO 

Note that we have used for example "bufO:inter", instead of "inter" itself, in order to avoid 

confusion between inter of bufO and inter of bufl. This example shows why we need to 

assign unique object IDs to the basic objects, input/output ports and intermediate signals, 

so that we can uniquely identify them. The main reason for doing this is because we use 

"names" for the elaboration process and multiple naming, different entities may occur. For 

example in Delayed _AND, two signals following elaboration will have same name as 

"inter", however these two signals are absolutely different from each other and it is our 

responsibility to somehow differentiate between them. In our approach by assigning IDs 

to objects and their input/output ports, we have overcome this problem. To solve the 

same problem for the intermediate signals, we simply rename them based on a tag ID. At 

each architecture statement part, we use a unique tag to rename the intermediate signal and 

when we move to the other architecture statement part of another design unit in the design 

unit tree, we can simply increment the tag to obtain a unique tag for that design. For 

example , if we initially set tag variable to 0, in bufO, we use this tag to rename "inter" to 

"_inter_0" and when we move to bufl, we increment the tag variable to 1, and therefore 

we rename "inter" located in bufl to "_inter_l" and we can see how this approach enables 

us to differentiate between bufO:inter and bufl:inter. 

In the following section we will explain the implementation of our algorithm in more 

detail, based on our example. 
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5.4 Implementation Overview 

We introduce a simple record as a unit of interconnection information and we call this unit 

a NetSegment. 

Record NetSegment 
{ 

signal_name; 
objectID; 
portID; 
port_type; 

} 

Here, the signal_name is the name of the input/output port; objectID is the object ID of 

the basic object that has this signal as its input/output port; portID is the port ID of this 

signal within that basic object; and port_type is the type of the port, input or output. These 

are the minimal number of fields we need for elaboration and our real implementation is a 

more complicated class than a record, with more data members and function members. 

For each input/output part of each basic object, we create such a NetSegment and fill in 

the fields. Then elaboration is done based on these NetSegments. Each node of the design 

tree receives a set of NetSegments from its children, elaborates them, and then reports the 

elaborated set to its parent, in the same way we explained in section 5.3. Lets do this in our 

example and see how it works: 

Phase  1 

bufOtnotO reports to bufO 
Signal_name I0»IN0 
ObjectID 0 
PortID 0 
Port_type Input 

bufOinotO reports to bufO 
Signal_name N0<»_inter_0 
Obj ectID 0 
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PortID 0 
Port_type Output 

bufO:notl reports  to bufO 
Signal_name 10<*_inter_0 
ObjectID 1 
PortID 0 
Port_type Input 

bu£0:notl reports  to bufO 
Signal_name N0OB0 
ObjectID 1 
PortID 0 
Port_type Output 

bufl:not0  reports to bufl 
Signal_name I0OIN0 
ObjectID 2 
PortID 0 
Port_type Input 

bufl:noto  reports to bufl 
Signal_name NOO   inter  1 
ObjectID 2 
PortID 0 
Port_type output 

bufl:not0  reports  to bufl 
S i gnal_name I0O_inter_l 
ObjectID 3 
PortID 0 
Port_type input 

bufl:notl reports  to bufl 
Signal_name N0OB0 
ObjectID 3 
PortID 0 
Port_type output 

Phase 2 

bufO:reports to Delayed_AND 
Signal_name I0OX0 
ObjectID 0 
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PortID 0 
Port_type input 

bufO:reports to Delayed_AND 
Signal_name N0O_inter_0 
ObjectID 0 
PortID 0 
Port_type Output 

bufO:reports to Delayed_AND 
Signal_name 10<*_inter 
ObjectID 1 
PortID 0 
Port_type Input 

bufO:reports to Delayed_AND 
Signal_name N0O_inter0_2 
ObjectID 1 
PortID 0 
Port_type Output 

bufl:reports to Delayed_AND 
Signal_name I0OX1 
ObjectID 2 
PortID 0 
Port_type Input 

bufl:reports to Delayed_AND 
Signal_name N0»_inter_l 
ObjectID 2 
PortID 0 
Port_type Output 

bufl:reports to Delayed_AND 
Signal_name 10<»_inter_l 
ObjectID 3 
PortID 0 
Port_type Input 

bufl:reports to Delayed_AND 
Signal_name N0<»_interl 
ObjectID 3 
PortID 0 
Port_type Output 

andO:reports to Delayed_AND 
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Signal_name I0O_inter0 
ObjectID 4 
PortID 0 
Port_type Input 

andO:reports  to Delayed_AND 
Signal_name HO_interl 
ObjectID 4 
PortID 1 
Port_type Input 

andO:reports  to Delayed_AND 
Signal_name A0OY0 
ObjectID 4 
PortID 0 
Port_type Output 

Note that for the signal_name field, instead of an elaborated name, we have used both 

signal name and elaborated name to make it easier to understand. In the real 

implementation, we simply substitute the current signal name with the elaborated signal 

name. In the previous example, the left hand side is the current signal name and the right 

hand side is the elaborated signal name (for example IO^INO in the first phase, notO of 

bufO simply substitutes 10 with INO in the corresponding NetSegment). 

After all the NetSegments are collected at the root, we can simply extract the 

interconnection information. For example to find the destination list of any output signal 

with the name xxx, we simply search through all NetSegments, and find those 

NetSegments labeled with the xxx as the signal name with port_type of input. The search 

can be done very efficiently, since we can make a sorted list of the NetSegments based on 

the signal names and for example, apply binary search to locate any specific NetSegment. 
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6. BENCHMARKS 

We have benchmarked the performance of Time Warp and Synchronous simulators 

on the SP2 and Origin 2000. A maximum speed-up of 31 has been achieved using 64 

processors. MPI was used on the SP2 and Origin2000 supercomputers. Benchmark circuits 

include ISCAS circuits with up to 18,000 objects. We have simulated these circuits with 

n=1000 vectors for 2,000,000 units of time. To measure the performance of each 

simulator, we have inserted a computational granularity as a parameter. For the s35932xl 

and oddeven benchmarks, we have simulated with up to 64 processors, and the remaining 

circuits, we have tested with up to 16 processors. 

Benchmark 
Circuit Name 

Number of 
Objects 

P=l Execution 
time 

The best execution time 
with up to P=64 or P=16 

Maximum 
Speed-up 

Optimal P 

s35932x2 17829 594 36 16 32 
oddeven 16650 787 25 31 64 
c7552* 3620 315 49 6.3 16 

multi32* 6950 4373 326 13.4 16 
sl5850* 5192 54 8.4 6.3 16 

The following figures show the speed-up with s35932X2 with up to 64 processors 

using Time Warp protocol. As shown in the Figure 6.1, the Time-Warp simulation speed- 

-Ideal Speed-up 

-Actual Speed-up 

5« 
d- 
up 

^L 

*r    t 

Number of Processor* 

Figure 6.1. Speed-up of s35932x2 
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up increases as the number of processors increases, but the rate of speed-up slows down as 

the number of processors increases. 

We also ran the parallel simulator on the SP2. Figure 6.2 shows the comparison of 

execution time on SP2 and Origin 2000 for Time Warp and Synchronous protocols with 

ISCAS S953. The Origin is approximately twice as fast as the SP2. As shown in the figure, 

the Time Warp is much slower than the synchronous one with 2 processors, but the Time 

Warp outperforms the synchronous one as the number of processors increase. As the 

number of the processor increases, both simulation schemes suffer because of the 

communication overhead. 

Execution time on SP and Origin 

300 

Synchronous at Origin 
TimeWarp at Origin 
Synchronous at SP2 
Timewarp at SP2 

# Processors 

Figure 6.2. Comparison of Time Warp & Synchronous Protocols on SP2 and Origin 2000 

Figures 6.3 and 6.4 compare the performance of simulation protocols as the amount of 

computation increases per event (called computation granularity). The synchronous one is 

better than Time Warp when the number of processors are small and the amount of 

computation per event is small. However, as the amount of computation increases, the 

performance of Time Warp outperforms the synchronous one. We also found that 

rollback rate 10~20% is acceptable for Time Warp. 
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Figure 6.3. Speed-up with ISCAS S953 for Grain size 100. 
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Figure 6.4. Speed-up with ISCAS S953 for Grain size 1000. 
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The performance of Time Warp is closely related to the amount of computation per 

event. The following three figures show the performance of Time Warp parallel simulation 

for various computation grain sizes (per event). Note that for a small grain size, the 

performance gain is minimal, but as the computation grain size increases, we can get a 

good speed-up for up to 32 processors. However, the communication cost eventually 

dominates as the number of processor increases and the speed-up gain drops as the 

number of processors becomes too large. 
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Figure 6.5. S35932xl Speed-up 
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Fig. 6.6 Speed-up of SI 5850 
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7. CONCLUSIONS 

We have implemented a parallel VHDL simulation, especially targeted for behavioral 

level simulation. The developed simulator could improve the speed-up up to 31 times 

using 64 processors. It has achieved our original goal of improving the speed of VHDL 

simulation, a bottleneck of microelectronic design. 

The speed of a parallel program depends on various factors such as the efficiency of 

algorithms (or schemes), data structures, communication mechanisms, load balancing, and 

programming styles. Among those, the communication overhead is one of the most 

important factors. Thus, the effect of communication latency hiding and overlapping 

computation and communication was not significant. Also the experimental results show 

that the computation grain size of each event affects the performance greatly. Particularly, 

we found out that many VHDL models we have simulated have very small grain size, 

limiting the speed-up gain. 

We have also developed an object modeling technique and a front-end interface for 

parallel simulation. The front-end interface translates VHDL models into C++ Object 

models. Our approach is extensible so that the user can mix and match the models 

developed by domain experts and the simulation scheme developed by parallel 

programmers. Therefore, our simulation engine can be applied to other areas of discrete 

event simulation such as the force-simulation and network simulation. The benefit of the 

object oriented nature of our approach is that by its very design, it is simple to "plug in" a 

different simulation kernel to get an efficient simulation. 
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APPENDICES 

APPENDIX A 

IIRPVHDL LAYER CLASS LIST 

IIRPvhdl 
IIRPvhdl_AdditionOperator 
IIRPvhdl_AndOperator 
IIRPvhdl_ArchitectureDeclaration 
IIRPvhdl_ArraySubtypeDefinition 
IIRPvhdl_CaseStatement 
IIRPvhdl_CaseStatementAlternative 
IIRPvhdl_CaseStatementAlternativeByExpression 
IIRPvhdl_CaseStatementAltemativeByOthers 
IIRPvhdl_CaseStatementAlternativeList 
IIRPvhdl_Choice 
IIRPvhdl_Declaration 
IIRPvhdl_DeclarationList 
IIRPvhdl_DesignFile 
IIRPvhdl_DivisionOperator 
IIRPvhdl_DyadicOperator 
IIRPvhdl_Elsif 
IIRPvhdl_EntityDeclaration 
IIRPvhdl_EnumerationLiteral 
IIRPvhdl_EnumerationTypeDefinition 
IIRPvhdl_EqualityOperator 
IIRPvhdl_FloatdngPointLiteral 
IIRPvhdl_ForLoopStatement 
IIRPvhdl_IfStatement 
IIRPvhdl_IndexedName 
IIRPvhdl_IntegerLiteral 
IIRPvhdl_MonadicOperator 
IIRPvhdl_MultiplicationOperator 
IIRPvhdl_Name 
IIRPvhdl_NotOperator 
IIRPvhdl_OrOperator 
IIRPvhdl_PhysicalLiteral 
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IIRPvhdl_ProcessStatement 
IIRPvhdl_RecordTypeDefinition 
IIRPvhdl_ScalarTypeDefinition 
IIRPvhdI_SelectedName 
IIRPvhdl_SequentiaIStatement 
IIRPvhdl_SequentialStatementList 
IIRPvhdl_SignalAssignmentStatement 
IIRPvhdl_SubtxactionOperator 
IIRPvhdl_TypeDeclaration 
IIRPvhdl_VariableAssignmentStatement 
IIRPvhdl_VariableDeclaration 
IIRPvhdl_WaitStatement 
IIRPvhdl_WaveformElement 
IIRPvhdl_WhileLoopStatement 
IIRPvhdl_XorOperator 
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APPENDIX B 

VHDL SOURCE OF AN AND GATE 

entity and.2 is 
port(A, B: in bit; 

Y: out bit); 
end entity and2; 

architecture behav of and2 is 
begin 
gate: process 

variable N : bit := '0' ; 
begin 

Y <=  N; 
wait on A, B; 
N :=  A and B; 

end process gate; 
end architecture behav; 
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APPENDIX C 

C++ CODE OF THE AND GATE 

#ifndef CLASSES_PVHDL_H 
#define CLASSES_PVHDL_H 

#include "BasicObject.h" 
#inelüde "SavantGlobals.h" 

typedef int SavantbitType; 
typedef int SavantintegerType; 
typedef int SavanttimeType; 
typedef double SavantrealType; 
typedef PvhdllDArray<SavantbitType> Savantbit_vectorType; 

class work_Dand2_Dbehav_of_work_Dand2_classO : public 
BasicObject 
{ 
public: 

// input signals 
Savantbi tType in_work_Dand2_0a; 
SavantbitType in_work_Dand2_0b; 

// output signals 
SavantbitType out_work_Dand2_0y; 

// signals used to handle wait for statement only 
SavantbitType in_wait_for_signal ; 
SavantbitType out_wait_for_signal ; 

// local vairables - states 
SavantbitType gatework_Dand2_Dbehav_0n; 

public: 

work_Dand2_Dbehav_of_work_Dand2_classO()  : 
BasicObject() 

{ 
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// register input signals 

registerlnSignal(&in_work_Dand2_0a,sizeof(in_work_Dand2_0a 
)); 

registerlnSignal(&in_work_Dand2_0b,sizeof(in_work_Dand2_0b 
)); 

// register output signals 

registerOutSignal(&out_work_Dand2_0y,sizeof(out_work_Dand2 
_0y)); 

// register the wait for signals 

registerlnSignal(&in_wait_for_signal,sizeof(in_wait_for_si 
gnal)); 

registerOutSignal(&out_wait_for_signal,sizeof(out_wait_for 
_signal)); 

// register states 
registerState(&gatework_Dand2_Dbehav_0n, \ 

sizeof(gatework_Dand2_Dbehav_0n)); 

// input signal initial values 
in_work_Dand2_0a = X; 
in_work_Dand2_0b = X; 

// output signal initial values 
out_work_Dand2_0y = Y; 

// wait for singal initial values 
in_wait_for_signal = 0; 
out_wait_for_signal = 0; 

// state initial values 
gatework_Dand2_Dbehav_On = 0; 

} // end of constructor 

void executeProcess() 
{ 

static int P=0; 

// resume to the last wait statement 
switch(P) { 
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case 0': goto BLOCK0; 
case 1 : goto BLOCK1; 
} 

BLOCK0: 

BLOCK1: 

// line 11 "and.tex" 
out_work_Dand2_Oy = gatework_Dand2_Dbehav_On; 
assignDelay(&out_work_Dand2_Oy,DELTA,TRANSPORT); 

// line 12 "and.tex" 
P++; 

if( lhasEvent(&in_work_Dand2_Oa) && 
lhasEvent(&in_work_Dand2_Ob) ) return; 

// line 13 "and.tex" 
gatework_Dand2_Dbehav_On = (in_work_Dand2_Oa & 

in_work_Dand2_Ob); 

// reset P value then return, or resume from 
beginning 

P = 0; 
} 

}; 

#endif 

96 



APPENDIX D 

SAVANTGLOBALS.H 

#ifndef SAVANT_GLOBALS_HH 
#define SAVANT_GLOBALS_HH 

#define X -1 
#define Y -1 

#define DELTA 1 
#define NS *100 
#define US *100000 
#define MS *100000000 

#define TRANSPORT 0 
#define INERTIAL 1 

#inelüde "PvhdlArray.h" 

#endif 
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APPENDIX E 

IIRPVHDL WAITSTATEMENT.HH 

#ifndef IIRPVHDL_WAITSTATEMENT_HH 
#define IIRPVHDL_WAITSTATEMENT_HH 

#include "IIRScram_WaitStatement.hh" 

class IIRPvhdl_WaitStatement : public 
IIRScram_WaitStatement { 
public: 
void _publish_cc(); 

private: 
void _publish_cc_wait_on(); 

protected: 
IIRPvhdl_WaitStatement(){}; 
~IIRPvhdl_WaitStatement(){}; 

}; 
#endif 
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APPENDIX F 

IIRPVHDL WAITSTATEMENT.CC 

#include "IIRPvhdl_WaitStatement.hh" 
#include "IIR_Designator.hh" 
#include "IIR_Declaration.hh" 
#include "IIR_DesignatorExplicit.hh" 

void 
IIRPvhdl_WaitStatement::_publish_cc(){ 
IIR_Designator *desig; 
IIR *cond_clause = get_condition_clause(); 
IIR *time_clause = get_timeout_clause(); 

_cc_out « "\t" « "P++;\n"; 
_cc_out « "BLOCK" « wait_id +1 « ":\n"; 

if(time_clause != NULL){ 
_cc_out « "\t" << "out_wait_for_signal = ! 

in_wait_for_signal;\n"; 
_cc_out « "\t" « 

"assignDelay(&out_wait_for_signal," ; 
time_clause->_publish_cc(); 
_cc_out « ",TRANSPORT);\n" « endl; 

} 

desig = sensitivity_list.first(); 

if(desig != NULL) _publish_cc_wait_on(); 
else if(cond_clause != NULL) { 
_cc_out « "\t" « "if(!("; 
cond_clause->_publish_cc(); 
_cc_out « ")"; 
if(time_clause != NULL) { 
_cc_out « " && lhasEvent(&in_wait_for_signal)"; 

} 
_cc_out << ") return;\n\n"; 

} else if(time_clause != NULL) { 
_cc_out « "\t" « "if(lhasEvent(&in_wait_for_signal) 
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return;\n\n"; 
} else { 
_cc_out « "\t" « "return;\n\n"; 

} 
} 

void 
IIRPvhdl_WaitStatement::_publish_cc_wait_on(){ 

IIR_Designator *desig; 
IIR_Declaration *sens_sig; 

IIR *cond_clause = get_condition_clause(); 
IIR *time_clause = get_timeout_clause() ; 

desig = sensitivity_list.first(); 

_cc_out « "\t" « "if( "; 

while(desig != NULL) { 
ASSERT(desig->get_kind()==IIR_DESIGNATOR_EXPLICIT); 
sens_sig = (IIR_Declaration *) \ 

((IIR_DesignatorExplicit *)desig)- 
>get_name(); 

if(sens_sig->_is_array_type()){ 
_cc_out << "!"; 
sens_sig->_publish_cc(); 
_cc_out « ".arrayHasEvent() "; 

} else { 
_cc_out « "IhasEvent(&"; 
sens_sig->_publish_cc(); 
_cc_out « ") "; 

} 

// move to the next 
desig = sensitivity_list.successor(desig); 
if(desig !=NULL) { 
_cc_out « "&&" « "\n" « "\t" « " 

} 
} // while 

if(time_clause != NULL){ 
_cc_out « "&&" « "\n" « "\t" « " 
_cc_out << "IhasEvent(&in_wait_for_signal)"; 

} 
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_cc_out « ") return;\n"; 

if( cond_clause != NULL) { 
_cc_out « "\t" « "else if(!("; 
cond_clause->_publish_cc(); 
_cc_out « ")"; 

if(time_clause != NULL) { 
_cc_out « " && IhasEvent(&in_wait_for_signal)"; 

} 

_cc_out << ") return;\n"; 
} 

_cc_out « "\n"; 
} 
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APPENDIX G 

PVHDLARRAY.H 

#ifndef PVHDL_ARRAY_H 
#define PVHDL_ARRAY_H 

#include <stdio.h> 
#include <iostream.h> 
#include "BasicObject.h" 

template <class Dtype> class PvhdllDArray { 
public: 
int size; 
Dtype *array; 
BasicObject *owner; 

// constructor 
PvhdllDArray(){ 

size = 0; 
array = NULL; 
owner = NULL; 

} 

// distructor 
-PvhdllDArray(){ 

if (array != NULL) delete [] array; 
} 

// allocate array 
void allocateArray(int s){ 

if(s<=0) return; 

size = s; 
array = new Dtype [s]; 

} 

// set the owner BasicObject of this array object 
void setBasicObject(BasicObject *b){ 

owner = b; 
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} 

// register array as input signal 
void registerlnSignalArray(){ 

for(int i=0;i<size;i++){ 
owner->registerInSignal(&array[i],sizeof(array[i] ; 

} 
} 

// register array as output signals 
void registerOutSignalArray(){ 

for(int i=0;i<size;i++){ 
owner- 

>registerOutSignal(&array[i],sizeof(array[i])); 
} 

} 

// register array as states 
void registerStateArray(){ 

for(int i=0;i<size;i++){ 
owner->registerState(&array[i],sizeof(array[i])); 

} 
} 

// test if array values have changed 
int arrayHasEvent(){ 

for(int i=0;i<size;i++){ 
if(owner->hasEvent(&array[i])) return 1; 

} 

return 0; 
} 

// copy array value from obj with delays 
void assignArray(PvhdllDArray<Dtype> &obj, int delay, 

int delay_type){ 
for(int i=0;i<size;i++){ 

array[i] = obj.array[ i ] ; 
owner->assignDelay(&array[i],delay,delay_type); 

} 
} 

// overload == 
int operator == (PvhdllDArray<Dtype> &obj) { 

for(int i=0;i<size;i++) 
if(array[i] != obj.array[i]) return 0; 
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return 1; 
} 

// overload != 
int operator != (PvhdllDArray<Dtype> &obj) { 

if (*this == obj) return 0; 
else return 1; 

} 

// overload == (int) 
int operator == (int val) { 

for(int i=0;i<size;i++) 
if(array[i] != val) return 0; 

return 1; 
} 

// overload != (int) 
int operator != (int val) { 

if (*this == val) return 0; 
else return 1; 

} 

// overload = 
PvhdllDArray<Dtype>& operator=(PvhdllDArray<Dtype> &obj) 

for( int i=0; i<size; i++) 
array[i] = obj.array[ i ] ; 

return *this; 
} 

1111111111111111  testing 
// overload = (int) value, used to initialize the array 
PvhdllDArray<Dtype>& operator=(int value) { 

for( int i=0; i<size; i++) 
array[i] = value; 

return *this; 
} 

// overload + 
PvhdllDArray<Dtype>& operator+(PvhdllDArray<Dtype> &obj) 

PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size) ; 

for(int i=0; i<size; i++) 
temp->array[i] =        array[i]+obj.array[i]; 
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return *temp; 
} 

// overload - 
PvhdllDArray<Dtype>& operator-(PvhdllDArray<Dtype> &ob j ) 

{ 
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size); 

for(int i=0; i<size; i++) 
temp->array[i] = array[i]-obj.array[i]; 

return *temp; 
} 

// overload * 
PvhdllDArray<Dtype>& operator*(PvhdllDArray<Dtype> &ob j) 

{ 
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size); 

for(int i=0; i<size; i++) 
temp->array[i] = array[i]*obj.array[i]; 

return *temp; 
} 

// overload / 
PvhdllDArray<Dtype>& operator/(PvhdllDArray<Dtype> &obj) 

{ 
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size); 

for(int i=0; i<size; i++) 
temp->array[i] = array[i]/obj.array[i]; 

return * temp; 
} 

// overload & 
PvhdllDArray<Dtype>& operator&(PvhdllDArray<Dtype> &obj) 

{ 
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size); 

for(int i=0; i<size; i++) { 
if(array[i]!=0 && obj.array[i]!=0) temp->array[i] = 1; 

else temp->array[i] = 0; 
} 
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return *temp; 
} 

// overload | 
PvhdllDArray<Dtype>& operator|(PvhdllDArray<Dtype> &ob j ) 

{ 
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size); 

for(int i=0; i<size; i++) { 
if(array[i]!=0 || obj.array[i]!=0) temp->array[i] = 1; 

else temp->array[i] = 0; 
} 

return *temp; 
} 

// overload * 
PvhdllDArray<Dtype>& operatorA(PvhdllDArray<Dtype> &obj 

{ 
PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(obj.size); 

for(int i=0; i<size; i++) { 
if(array[i] != obj.array[i]) temp->array[i] = 1; 
else temp->array[i] = 0; 

} 

return * temp; 
} 

// overload ~ 
PvhdllDArray<Dtype>& operator-() { 

PvhdllDArray<Dtype> *temp = new PvhdllDArray<Dtype>; 
temp->allocateArray(size); 

for(int i=0; i<size; i++) { 
if(array[i] == 0) temp->array[i] = 1; 
else temp->array[i] = 0; 

} 

re turn * t emp; 
} 

}; // class PvhdllDArray 
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#endif 
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APPENDIX H 

INSTRUCTIONS AND MANUALS 

FRONT END INTERFACE 

To run the system, follow these steps: 
0) cd ~pvhdl/savant/src/aire/iir/TEST. This is the main directory for generating 
files. 

1) Type and enter : 
interface <Design File> <Entity Name> <Architecture Name> <Number 
of events> <Clock Width> <Number of processors> 
This will create a directory with the name <Design File>.FILES, which includes all the 
generated files. 

2) cd <Design File>.SIMULATION_FILES 
There are three subdirectories: simulation_files, DEBUG and WORK. We just need the 
files in simulation_files and the other two directories are for debugging purposes. 

simulation_files directory, includes all the files that are used by the simulator. These files 
are : 

- <Entity Name>_<Architecture_Name>.net 
- <Entity Name>_<Architecture_Name>.primary_inputs 
- <Entity Name>_<Architecture_Name>.primary_outputs 
- <EntityName>_<Architecture_Name>.partition. <Number of processors> 
- <Entity Name>_<Architecture_Name>.vec. <Number of events> 
- Classes.h 
- InstantiateObject.cpp 

3) cd simulation_files 

4) copy files to the simulator's directory. 

Since <Entity Name>_<Architecture_Name>.net is independent of partition 
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information or test vector size, the following utilities can be used to generate a new 
partition 
(new <Entity Name>_<Architecture_Name>.partition. > <Number of processors> 
file) 
or a new test vector (in <Entity Name>_<Architecture_Name>.vec. <Number of 
events>) . 

To generate a new partition, follow these steps: 

1) cd ~pvhdl/savant/src/aire/iir/TEST 

2) Type and enter : 

randompartition <Design File> <Entity Name> <Architecture Name> 
<Number of processors> 
2) cd <Design File>.FILES 

3) cd simulation_files 

4) copy <Entity Name>_<Architecture_Name>.partition. <Number of 
processors> 
to the simulator's directory. 

To generate a new test vector, follow these steps : 

1) cd ~pvhdl/savant/src/aire/iir/TEST 

2) Type and enter : 

generate_vector <Design File> <Entity Name> <Architecture Name> 
<Number of events> <Clock Width> 

2) cd <Design File>.FILES 

3) cd simulation_files 

4) copy <Entity Name>_<Architecture_Name>.vec. <Number of events> 
to the simulator's directory. 

Example : 

Suppose that the design file is shifter.vhd , with the top most design unit entity shifter 
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and architecture structural: 

Design file : shifter.vhd 
Top most entity name : shifter 
Top most architecture name : structural 
User specified number of events per primary input: 400 
User specified clock width : 200 
Number of processors for this simulation : 4 

Then we follow the direction : 

$ cd ~pvhdl/savant/src/aire/iir/TEST 
$ interface shifter.vhd shifter structural 400 200 4 

This will create a directory 
~pvhdl/savant/src/aire/iir/TEST/shifter.vhd.SIMULATION_FILES 

$ cd shifter.vhd.SIMULATION_FILES 
$ cd simulation_files 
$ls 

will show: 

shifter_structural.net 
shifter_structural.primary_inputs 
shifter_structural.primary_outputs 
shifter_structural.partition.4 
shifter_structural.vec.400 
Classes.h 
InstantiateObject.cpp 
$ cp * <SIMULATION_DIRECTORY>. 

Now, suppose that you want to generate a new partition with 8 processors 

$ cd ~pvhdl/savant/src/aire/iir/TEST 
$ random_partition shifter.vhd shifter structural 4 
$ cd shifter.vhd.SIMULATION_FILES 
$ cd simulation_files 
$ cp shifter_structural.partition.8 <SIMULATION_DIRECTORY>. 
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Or you may want to generate a test vector with larger size : 

$ cd ~pvhdl/savant/src/aire/iir/TEST 
$ generate_vector shifter.vhd shifter structural 600 100 
$cd shifter.vhd.SIMULATION_FILES 
$ cd simulation_files 
$ cp shifter_structural.vec.600 <SIMULATION_DIRECTORY>. 

Description: 

interface <Design File> <Entity Name> <Architecture Name> <Number 
of events> <Clock Width> <Number of processors> 
It is a C shell script, which glues different files that are created by scram and other utilities. 
It creates a subdirectory with the name <Design File>.SIMULATION_FILES, which 
includes all the generated files. It also creates three subdirectories under the <Design 
File>.SIMULATION_FILES. These directories are 

1) simulation_files,   which includes all the files which are plugged into simulator. The 
following files are created in this directory : 

- <Entity Name>_<Architecture_Name>.net 
Includes the interconnection information of the design (generated by scram). 
- <Entity Name>_<Architecture_Name>.primary_inputs 
Includes information about the primary inputs of the design (generated by scram). 
- <Entity Name>_<Architecture_Name>.primary_outputs 
Includes information about the primary outputs of the design (generated by scram). 
- <Entity Name>_<Architecture_Name>.partition. <Number of processors> 
Includes the partition information of the design (not generated by scram). 
- <Entity Name>_<Architecture_Name>.vec. <Number of events> 
Includes test bench for this design (not generated by scram). 
- Classes.h 
Includes C++ classes generated by scram. 
- InstantiateObjectcpp 
Includes initialization code for the simulator. 

2) DEBUG, which includes additional files useful for debugging.. The following files are 
created in this directory : 

- <Entity Name>_<Architecture_Name>.net.debug 
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Includes the debugging interconnection information of the design (generated by scram). 
- <Entity Name>_<Architecture_Name>.net.seg 
Includes the interconnection information of the design (generated by scram). 
- <Entity Name>_<Architecture_Name>.primary_inputs.debug 
Includes debugging information about the primary inputs of the design (generated by 
scram). 
- <Entity Name>_<Architecture_Name>.primary_outputs.debug 
Includes debugging information about the primary outputs of the design (generated by 
scram). 

3) WORK, which is a working directory for the scripts. Basically it contains the union of 
the previous two directories. 

This script invokes scram and three other perl scripts: 

(1) partition.prl, which generates <Entity Name>_<Architecture_Name>.partition. 
<Number of processors> file. 

(2) test_vector.prl, which generates <Entity Name>_<Architecture_Name>.vec. 
<Number of events> file. 

(3) instantiation.prl, which generates InstantiationObject.cpp 
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PARALLEL SIMULATION 

Parallel Simulation 

After generating C++ models, they can be simulated by the simulation kernel. The steps are: 
Test Vector Generation 
Partitioning 
Compiling 

There are three different simulation kernels developed, sequential, synchronous, and Time Warp. 
The following section describes the details how C++ models can be simulated. To simulate the 
model in parallel, the user must specify the simulation kernel, the test vector size, the duration of 
simulation cycle, partitioning scheme, among others. To simplify these steps, we have developed 
scripts, and the following shows step by step how users can run a parallel simulation. 

Directory structure 

To simplify the running on HPC platforms, we have developed a script that works under two parallel 
computers, Origin 2000 and IBM SP2. They share the source code in the system but their binary 
code is different. There are two subdirectories. Subdirectory "o2k" contains the files for the Origin 
2000 and subdirectory "sp2" contains the files for the IBM SP2. 

"src" directory 

The "src" directory contains all the source code for the simulation kernels and partitioning program. 
There are three simulation kernels. They are "sequential", "synchronous" and "timewarp" separately, 
"partition" subdirectory contains the source code for three different ways of partitioning. They 
include random partition, random partition with duplication and level partition. 

"bin" directory 

The "bin" directory contains all the executables. "sequential" subdirectory includes the make file and 
simulation file. Because there is a difference in the PBS format for Origin 2000 and IBM SP2, there 
were two subdirectories for "synchronous" and "timewarp" directory. Each of them contains a 
make script and a simulation script both in batch and interactive mode. For detailed information, 
please see the README file in the directory or check the complete documentation. 

The "partition" directory contains executables for random partition, random partition with 
duplication and level partition, "util" directory contains utilities like checking the correctness of data 
file and checking the output result of simulation. Please see the README file of that directory of 
the complete documentation. 

"data" directory 

The "data" directory contains all the data generated by the interface program. The interface program 
generates (from the VHDL file) the C++ model and elaboration information. Each directory 
contains the files for one VHDL source file. The name of the directory must conform to the format 
of "entity_architecture", otherwise it can not be correctly simulated. 
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"result" directory 

The "result" directory contains the output results of a simulation run by batch mode. The simulation 
kernel can be either synchronous or timewarp. Depending on the simulation kernel, parallel 
computer (o2k, sp2) and the data, a corresponding directory will be created if it does not exist. For 
example, if "oddeven_structure" is run with the timewarp kernel on the sp2, directory 
"result/timewarp/sp2/oddeven_structure" will be created. Inside the directory are all the results 
that ran with these parameters. If different numbers of processors are used in simulation, the file 
name will be different in that directory. The number of processors can identify them. 

The following figure shows the directory structure. 
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PVHDL src sequential 

I 
— synchronous 

I 
— timewarp 

I 
— partition 

bin sequential 

■I 
— synchronous o2k 

I 
— sp2 

- timewarp o2k 

I 
— sp2 

- partition o2k 

I 
— sp2 

 uul 

— data entity_architecture_l 

I 

I    "  . 
- entity_arcbitecture_k 

- result synchronous o2k entity_architecture_l 
| |      ... 
| — entity_architecture_k 

I 
— sp2 entity_arcbitecture_l 

I      - 
— entity_architecture_k 

timewarp      o2k entity_architecture_l 
| |      ... 
| — entity_architecture_k 

I 
— sp2 entity_architecture_l 

I      - 
— entity_architecture_k 
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Compiling, Partitioning and Running 

To compile and run a program, go to the "bin" directory. For the synchronous simulation kernel, go to 
"bin/synchronous". You will find two subdirectories under "bin/synchronous". One is "o2k", the other is 
"sp2". Directory "o2k" contains executables for SGI Origin 2000 and directory "sp2" contains executables 
for IBM SP2. To get detailed information for compiling and running, check the README file of these two 
directories. 

Similarly, "bin/timewarp" contains the timewarp simulation kernel and "bin/sequential" contains 
the sequential simulation kernel. 

Compiling 

Before simulation, the C++ model has to be compiled and linked with different simulation kernels. 
There are several shell scripts that do this task. 

Sequential Simulation 

Directory:      bin/sequential/o2k or bin/sequential/sp2 
Command:     seqmake <entity_arch> 
Example:       seqmake s35932xl_structural 
Note: All the files below must be present in data/s35932xl_structural directory. 

Classes.h 
InstantiateObject.cpp 

Synchronous Simulation 

Directory:      bin/synchronous/o2k or bin/synchronous/sp2 
Command:     syncmake <entity_arch> 
Example:       syncmake s35932xl_structural 

Timewarp Simulation 

Directory:      bin/timewarp/o2k or bin/timewarp/sp2 
Command:     twmake <entity_arch> 
Example:       twmake s35932xl_structural 

Partitioning 

To simulate in parallel, it is necessary to partition the data statically for a particular number of 
processors you want to simulate the C++ model with. The system provides three different 
partitioning algorithms: random partition, random with duplication and level partitioning. 

Random Partition: 
Circuit graphs are partitioned in random assignment. 
It is well known that random partition        works well in most cases. 
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Random with duplication: 
Certain gates that have high out-degree are duplicated to reduce the communication cost. 

Level Partitioning 
Gates that are in the same level are grouped together. This partitioning scheme works well 
in the synchronous protocol. 

Good partitioning can improve the performance of simulation. Depending on the C++ model, one 
partitioning algorithm may perform better than the other ones. Synchronous simulation works only 
with random partitioning. Timewarp simulation works with all the partitioning algorithms. 

Random Partitioning 

Directory:      bin/partition/o2k or bin/partition/sp2 
Command:    RP <entity_arch> <Num Partition> 
Example:      RP s35932xl_structural 8 
Note: The command in the example creates partitions from 1 up to 8 processors for the 

model s35932xl_structural. The command requires that file 
"s35932xl_structural.net" has to be present in the directory 
"data/s35932xl_structural". After the successful execution, files 
"s35932xl_structural.partiiion.l" to "ds35932xl_structural.partition.8" will be 
generated in the directory "s35932xl_structural". 

Random partitioning with duplication 

Directory:     bin/partition/o2k or bin/partition/sp2 
Command:   RP_Dup <entity_arch> <Num Partition> 
Example:      RP_Dup s35932xl_structural 8 
Note:      The command in the example creates partitions from 1 up to 8 

processors for the model s35932xl_structural. The command requires that file 
"s35932xl_structural.net" has to be present in the directory "data/s35932xl_structural". 
After the successful execution, files "s35932xl_structural.partition.l.Dup" to 
"s35932xl_structural.partition.8.Dup" will be generated in the directory 
"s35932xl_structural". 

Level Partition with duplication 

Directory:       bin/partition/o2k or bin/partition/sp2 
Command:     LP_Dup <entity_arch> <Num Partition> 
Example:        LP_Dup s35932xl_structural 8 
Note: The command in the example creates partitions from 1 up to 8 

processors for the model s35932xl_structural. The command 
requires that file "s35932xl_structural.net" has to Be present 
in the directory "data/s35932xl_structural". After the successful 
execution, files "s35932xl_structural.partition.l.Level" to 
"s35932xl_structural.partition.8.Lever' will be generated in 
the directory "s35932xl_structural". 
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Running the simulation 

After compiling and partitioning, you are ready to run the simulation. We provided the interactive 
and batch scripts. 

Sequential Simulation 

Directory:      bin/sequential/o2k or bin/sequential/sp2 
Command:    run_i <entity_arch> <VecSize> <MAXGVT> [PRINT] 
Parameters: 

<entity_arch>: the model to simulate 
<VecSize>: the size of test vector 
<MAXGVT>: the time limit of simulation 
[PRINT]: 0 - Do not print events (Fastest) 

1 - only print events on primary output 
2 - print all the events 

Example:       run_i s35932xl_structural 1000 10000 0 
The command above will simulate model "s35932xl_structural" 
With 1000 test vectors and time limit 10000. This simulation does 
not print any events. 

The following files have to be in directory "data/s35932xl_structural" 

s35932xl_structural.net 
s35932xl_structural.partition. 1 
s35932xl_structural.primary_inputs 
s35932xl_structural.primary_outputs 
s35932xl_structural.vec.1000 

Synchronous Simulation 

Directory:      bin/synchronous/o2k or bin/synchronous/sp2 
Command: 

Interactive :   run_i <entity_arch> <NumProcessor> <VecSize> <MAXGVT> [PRINT] 

Batch: run_batch <entity_arch> <NumProcessor> <VecSize> <MAXGVT> [Granularity] 
[PRINT] 

Parameters: 
<entity_arch>: the model to simulate 
<NumProcessor>: Number of processors to use during the simulation 
<VecSize>: the size of test vector 
<MAXGVT>: the time limit of simulation 
[PRINT]: 0 - Do not print events (Fastest) 

1 - only print events on primary output 
2 - print all the events 

Example:       run_batch s35932xl_structural 8 1000 10000 0 0 
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The command above will simulate model "s35932xl_structural" 
with 1000 test vectors and time limit 10000. This 
simulation does not print any event. The number of 
processors used during the simulation is 8. 

The following files have to be in directory "data/s35932xl_structural" 

s35932xl_structural.net 
s35932xl_structural.partition.8 
s35932xl_structural.primary_inputs 
s35932xl_structural.primary_outputs 
s35932xl structural.vec.1000 

Timewarp Simulation 

Directory:      bin/timewarp/o2k or bin/timewarp/sp2 
Command: 

Interactive :   run_i <entity_arch> <NumProcessor> <VecSize> <MAXGVT> <Partition> 
<Schedule> [PRINT] [GVTWINDOW] [MSGCHECK] 

Batch: run_batch <entity_arch> <NumProcessor> <VecSize> <MAXGVT> <Partition> 
<Schedule> [Granularity] [PRINT] [GVTWINDOW] [MSGCHECK] 

Parameters: 
<entity_arch>: the model to simulate 
<NumProcessor>: Number of processors to use during the simulation 
<VecSize>: the size of test vector 
<MAXGVT>: the time limit of simulation 
<Partition>: 0 - Random Partition 

1 - Random Partition with Duplication 
2 - Level Partition 

<Schedule>: Number of objects active per communication cycle 
[Granularity] default=0 
[PRINT]: 0 - Do not print events (Fastest) 

1 - only print events on primary output 
2 - print all the events 

[GVTWINDOW]: GVT window size. Default is MAXGVT. 
[MSGCHK]: Number of objects active before checking message. Default is <Schedule> 

Example:    runjbatch s35932xl_structural 8 1000 100000 1 50 0 0 
The command above will simulate model "s35932xl_stmctural" 
With 1000 test vectors and time limit 100000. This 
simulation does not print any events. The number of 
processors used during the simulation is 8 and in each 
communication cycle 50 objects are active. 
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The following files have to be in directory "data/s35932xl_structural" 

s35932xl_structural.net 
s35932xl_structural.partition. 8.Dup 
s35932xl_structural.primary_inputs 
s35932xl_strucrural.primary_outputs 
s35932xl structural.vec.lOOO 
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